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ABSTRACT

HYPOTHESIS TESTING USING SPATIALLY DEPENDENT HEAVY-TAILED MULTISENSOR DATA

Report Title

The detection of spatially dependent heavy-tailed signals is considered in this dissertation. While the central limit 
theorem, and its implication of asymptotic normality of interacting random processes, is generally useful for the 
theoretical characterization of a wide variety of natural and man-made signals, sensor data from many different 
applications, in fact, are characterized by non-Gaussian distributions. A common characteristic observed in non-
Gaussian data is the presence of heavy-tails or fat tails. For such data, the probability density function (p.d.f.) of 
extreme values decay at a slower-than-exponential rate, implying that extreme events occur with greater probability. 
When these events are observed simultaneously by several sensors, their observations are also spatially dependent. In 
this dissertation, we develop the theory of detection for such data, obtained through heterogeneous sensors. In order 
to validate our theoretical results and proposed algorithms, we collect and analyze the behavior of indoor footstep 
data using a linear array of seismic sensors. We characterize the inter-sensor dependence using copula theory. 
Copulas are parametric functions which bind univariate p.d.f.s, to generate a valid joint p.d.f.

We model the heavy-tailed data using the class of alpha-stable distributions. We consider a two-sided test in the 
Neyman-Pearson framework and present an asymptotic analysis of the generalized likelihood test (GLRT). Both, 
nested and non-nested models are considered in the analysis. We also use a likelihood maximization-based copula 
selection scheme as an integral part of the detection process. Since many types of copula functions are available in 
the literature, selecting the appropriate copula becomes an important component of the detection problem. The 
performance of the proposed scheme is evaluated numerically on simulated data, as well as using indoor seismic data. 
With appropriately selected models, our results demonstrate that a high probability of detection can be achieved for 
false alarm probabilitiesof the order of 10e-4. 



These results, using dependent alpha-stable signals, are presented for a two-sensor case. We identify the 
computational challenges associated with dependent alpha-stable modeling and propose alternative schemes to 
extend the detector design to a multisensor (multivariate) setting. We use a hierarchical tree based approach, called 
vines, to model the multivariate copulas, i.e., model the spatial dependence between multiple sensors. The 
performance of the proposed detectors under the vine-based scheme are evaluated on the indoor footstep data, and 
significant improvement is observed when compared against the case when only two sensors are deployed. Some 
open research issues are identified and discussed.



ABSTRACT

The detection of spatially dependent heavy-tailed signals is considered in this dissertation.

While the central limit theorem, and its implication of asymptotic normality of interacting

random processes, is generally useful for the theoretical characterization of a wide variety of

natural and man-made signals, sensor data from many different applications, in fact, are char-

acterized by non-Gaussian distributions. A common characteristic observed in non-Gaussian

data is the presence of heavy-tails or fat tails. For such data, the probability density func-

tion (p.d.f.) of extreme values decay at a slower-than-exponential rate, implying that extreme

events occur with greater probability. When these events are observed simultaneously by sev-

eral sensors, their observations are also spatially dependent. In this dissertation, we develop the

theory of detection for such data, obtained through heterogeneous sensors. In order to validate

our theoretical results and proposed algorithms, we collect and analyze the behavior of indoor

footstep data using a linear array of seismic sensors. We characterize the inter-sensor depen-

dence using copula theory. Copulas are parametric functions which bind univariate p.d.f.s, to

generate a valid joint p.d.f.

We model the heavy-tailed data using the class of ↵-stable distributions. We consider a

two-sided test in the Neyman-Pearson framework and present an asymptotic analysis of the

generalized likelihood test (GLRT). Both, nested and non-nested models are considered in

the analysis. We also use a likelihood maximization-based copula selection scheme as an

integral part of the detection process. Since many types of copula functions are available in the

literature, selecting the appropriate copula becomes an important component of the detection

problem. The performance of the proposed scheme is evaluated numerically on simulated

data, as well as using indoor seismic data. With appropriately selected models, our results

demonstrate that a high probability of detection can be achieved for false alarm probabilities



of the order of 10�4.

These results, using dependent ↵-stable signals, are presented for a two-sensor case. We

identify the computational challenges associated with dependent ↵-stable modeling and pro-

pose alternative schemes to extend the detector design to a multisensor (multivariate) setting.

We use a hierarchical tree based approach, called vines, to model the multivariate copulas, i.e.,

model the spatial dependence between multiple sensors. The performance of the proposed de-

tectors under the vine-based scheme are evaluated on the indoor footstep data, and significant

improvement is observed when compared against the case when only two sensors are deployed.

Some open research issues are identified and discussed.
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1

CHAPTER 1

INTRODUCTION

Our lives today are constantly aided and enriched by various types of sensors, which are de-

ployed ubiquitously. They perform different roles, based on the context of their deployment.

For example, as a part of modern mobile devices, we commonly find GPS information overlaid

over image data, and this forms the basis of an augmented reality system. When deployed as a

part of the different living spaces we occupy, sensors such as CO2 and infrared modalities can

be used indoors, at the front end of an energy-aware intelligent indoor environmental control

system. Traffic cameras and GPS sensors can be used outdoors to assist drivers navigate busy

rush-hour traffic.

In each of the above applications, sensors of different types, i.e., heterogeneous sensors,

are used to make complex inferences about an underlying observed process. This is similar,

in many ways, to how we, as humans, combine or fuse different streams of information orig-

inating from our sense organs. Over the past two decades, the field of information fusion has

been extensively studied and researched. Although there exists a rich body of literature, the

increasing complexity of systems as well as the vast diversity of applications require constant

revision to existing technologies and continued research in this area.

In many inference applications, it is sufficient to deploy sensors, such as seismic or acoustic
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modalities, which are capable of providing one dimensional time-series data. Sensing modali-

ties such as video or infrared cameras have the ability to provide richer quality of information,

but are either not practical to deploy, or have other constraints that do not permit their use

in certain applications. For example, in an urban combat scenario, soldiers may require the

surveillance of cleared buildings. For this application, the use of video cameras may either

require a deployment and setup time which is not available, or there may exist critical areas

that need monitoring but are occluded from a camera’s field of view. When sensors are used for

patient monitoring in hospitals, it is quite common to have situations where privacy concerns

preclude the use of a video or similar imaging modality. In this dissertation, we are motivated

by such applications and, in particular, develop appropriate theory, and for validation, apply it

to the data obtained from seismic sensors deployed for indoor personnel monitoring.

The outcome of the information fusion process is, usually, some form of inference about

the scene or phenomenon being observed. The phenomenon is context specific and, therefore,

varies with the application being considered, e.g., personnel movement for surveillance, patient

health in a health-care facility or habitability of the room for an indoor environment control

application. The inference tasks could consist of detecting or estimating some parameters,

such as locations or tracks, that provide information for situational awareness. The inferred

parameters are a function of the specific model being considered, and emerge from the context/

application under consideration.

Data from sensors typically exhibit information heterogeneity that can arise from a wide

variety of causes. The sensors deployed in a given region of interest, in the most general set-

ting, may consist of rather disparate and incommensurate modalities. Even sensors of the same

modality may exhibit differences in their sensing ability, due to differences during manufac-

turing, quality control or the duration and location of their deployment. Since these sensors

also observe different aspects of the same phenomenon, their observations are also dependent.

The nature of this dependence can be quite complex and nonlinear, especially in cases where
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the signal may propagate through a non-homogeneous medium. Additionally, the nature of the

phenomenon, as well as the medium, can potentially result in non-Gaussian sensor measure-

ments.

Fault tolerance and enhanced performance are key systemic advantages that result from

fusing heterogeneous information sources because of the diversity, redundancy and increased

coverage that they provide. As a consequence of heterogeneity, the quality and quantity of

information provided by each sensing “modality”, which can potentially include human in-

telligence, varies with each source. In this sense, the words “sensor” and “node” are used

interchangeably here and refer to any source of data. Note that while local observations and in-

ferences from a group of heterogeneous sensors monitoring the same phenomenon may exhibit

statistical dependence, they still provide different characterizations of the phenomenon under

observation. Thus, the entire network does not fail as a result of one modality getting compro-

mised. However, an accurate characterization of the inter-modality dependence is necessary

for making reliable system-wide inference.

The above considerations are central to the ideas explored in this dissertation. We pri-

marily investigate detection problems, from an information fusion perspective, when sensor

observations are heterogeneous, dependent and heavy-tailed (non-Gaussian). Throughout this

dissertation, we use footstep detection as an example application. For this we consider in-

door seismic signals that we have collected using geophone sensors. In the following sections,

we systematically introduce the main ideas related to information fusion using heterogeneous,

dependent, heavy-tailed multisensor data.

1.1 Statistical approach to information fusion

The typical information fusion problem consists of a suite of networked or non-networked

“sensors” that are deployed in a region of interest (ROI). The word “sensor”is used to include

not only physical sensors, but any source capable of providing information based on its obser-
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vations of a phenomenon occurring within the ROI. Therefore, local decision makers such as

human agents are also considered to be sensors. Additionally, when monitoring a phenomenon

of interest, the suite of sensors may consist of heterogeneous sensors.

The statistical approach to information fusion considers that a fusion center (FC) receives

data from L sensors, where the data are characterized using a probabilistic model. The nature

of the problem being considered, together with the model specification, determines the specific

inference scheme employed by the fusion center. From each of the L sensors, the fusion center

receives a sequence of N observations, xij, i = 1, 2, . . . , L, j = 1, . . . , N . Any inference

process can use the data either sequentially, one observation at a time with an appropriate

update rule, or take a one-shot approach, where one block N ⇥ L observations are used for

inference. For the algorithms and techniques proposed in this dissertation, we consider a one-

shot approach.

Each xij is a realization of the random variable, Xi. In this dissertation, we consider that the

random variables are independent and identically distributed over the index j, but are dependent

over the index i. These Xi, in the most general setting, may represent analog (unquantized)

data, soft decisions or quantized data, or 1-bit local (hard) decisions. This notation, therefore

accommodates raw sensor observations as well as data obtained after local or sensor-level

processing.

When data are quantized locally to a 1-bit resolution, they often represent the case when

sensors have additional processing capability to take local decisions. From the fusion perspec-

tive, this is also known as decision-level fusion. Local sensor-level processing which results

in either a one-bit or M -bit output (with small M , i.e., coarse quantization) is often used in

wireless sensor networks (WSN). A typical WSN is a network comprising power and band-

width constrained sensors as the nodes of the network; these sensors transmit their hard or soft

decisions to the fusion center through a wireless channel.

Feature-level fusion refers to the case when sensors have the computational resources for
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complex signal processing, such that some descriptive features may be extracted from the raw

data. Such features may include likelihood values, spectral coefficients, or the coefficients

obtained from some other transform domain operation. Classification problems often employ

such features which, when appropriately designed, provide a multidimensional basis for dis-

criminating between the various classes under consideration. Feature extraction is also an ef-

fective way to process signals, which in their raw unprocessed form, may be incommensurate.

When Xi represents unprocessed observations, such a fusion scheme is referred to as data-level

fusion. This also represents the case where there is no decentralization of the decision-making

process. Effectively, the fusion center is the only processing unit in the entire system.

Irrespective of the fusion levels or the nature of quantization, the design and analysis of a

fusion method, from a statistical perspective, requires the probabilistic specification of Xi. The

sensor model for the i-th sensor is, for analog data, the univariate probability density function

(p.d.f.) or, for quantized data, the probability mass function (p.m.f.) of Xi. The sensors may

be deployed in various spatial configurations or topologies. In this dissertation, we assume that

the sensors send their observations to the fusion center, in parallel – without communicating

with each other. This architecture is called the parallel fusion architecture in the distributed

inference literature (see Fig. 1.1). Here, each sensor is depicted by a different shape: this is to

indicate that the sensors could be of possibly different modalities.

The FC applies a fusion rule, which is a function defined on all Xi and determines a final

decision or parameter value, based on the inference task considered. An optimal fusion rule

typically maximizes a cost function, which is defined for the entire system. Note that in the

preceding discussion, we do not specify the statistical nature of the sensor output; we only

specify that all Xi are the input to the fusion center. That is, any distortion to the sensor’s

output (e.g., additive noise, fading, channel attenuation, etc.) are not modeled separately and

are accommodated within Xi.
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Fig. 1.1: Parallel topology for data fusion. Different shapes imply different sensor modalities.

1.2 Dependence modeling

When sensors observe a common phenomenon, as shown in Fig. 1.1, their measurements of-

ten exhibit spatial statistical dependence. This dependence may emerge in spite of sensors

observing the phenomenon of interest as independent observers. For example, signals may be

modeled as being embedded in additive correlated noise. Such a model is typically useful when

sensors are deployed close to each other, e.g., in an acoustic array or a closely spaced array of

antenna elements. When measurements are made using physical sensors, the relevant signals

emerging from the source or phenomenon propagate through a common physical medium, be-

fore they are incident at the sensor. When the medium of propagation is non-homogeneous, the

dependence structure between any Xi and Xi0 , i 6= i0, can be significantly nonlinear. Hence, the

commonly-used second-order measure – the correlation coefficient – becomes an inadequate

measure of statistical dependence.

The issue of statistical dependence is even more complex when different sensor modalities

are used. An observed phenomenon may give rise to disparate or incommensurate processes

which are sensed and measured differently by modalities sensitive to the signals from those

respective processes. For example, consider the phenomenon where acoustic and video modal-

ities observe a person talking. Here, although the acoustic and video data are not coupled
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via a shared medium of propagation, features extracted from voice data (acoustic sensor) and

image sequences of lip movements (video sensor) are statistically dependent. In this example,

dependence is induced by the phenomenon. A multimodal deployment necessarily implies het-

erogeneity. Suppose, for 1  i 6= i0  L, the p.d.f.s of Xi and Xi0 are denoted as fXi and fXi0 ,

sensors i and i0 are heterogeneous if fXi 6= fXi0 . Note that if sensor i is an acoustic modality

and i0 provides video data, fXi and fXi0 may not be defined on the same support. This is an

additional layer of complexity when modeling the joint p.d.f. fXi,Xi0 . The joint distribution

of sensor measurements is necessary for any inference task. In this dissertation, copulas, dis-

cussed in detail in Chapter 3, are used to construct valid joint distributions describing possibly

nonlinear dependence structures, such that each Xi can be heterogeneous.

1.3 Heavy-tailed signals

Many important stochastic phenomena cannot be adequately modeled with distributions that

decay exponentially in the tail. For such phenomena, extreme value measurements occur at a

significantly greater frequency than is attributable to distributions that decay exponentially in

the tail. One can typically observe a “spiky” signature in a time series plot of these measure-

ments and such signals are often said to be fat-tailed or heavy-tailed.

Examples of such signals can be seen in applications such as finance, geology, climatol-

ogy and bioengineering. In many scenarios arising from these applications, the detection of

significant deviations or anomalies from a process describing a null hypothesis is an important

task. Many of these anomalies can be characterized as extreme-value deviations from the null

process, i.e., the anomalies occur with low probability and fall in the tail regions of the null

hypothesis distributions. These problems have been studied in detail when the underlying dis-

tributions are well-behaved and easy to characterize. However, when distribution tails decay

at slower-than-exponential rates, the inference task becomes difficult because of modeling and

associated tractability issues.
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When the observed data have heavy tails in their distribution, the consequences of improper

model selection become more severe. An anomalous process being observed by multiple sen-

sors such that observations are dependent implies that, effectively, the fusion center observes

extreme co-movements in the distribution tails. Such events are called tail-dependent events.

Development and selection of models capable of capturing this tail-dependence, also called

extremal dependence, becomes an important component of the overall inference problem. Ex-

tremal dependence is especially relevant in the context of modern portfolio theory. When there

does not exist sufficient diversity within a portfolio, the associated risk increases given an ex-

pected return or profit. When distributions characterizing the associated risk do not capture the

tail-heaviness or tail-dependence, the likelihood corresponding to high risk values are underes-

timated, which affects the reliability of decisions. The application of improper models, where

tail-dependence was inadequately quantified, was considered to be one of the causes for the

financial crisis of 2007-2008.

In this dissertation, we focus on footstep signals, acquired from an array of seismic sensors,

and show that they can be modeled as dependent heavy tailed signals. Using these signals as

a motivating example, the theory for modeling and detecting spatially dependent heavy tailed

signals is studied. The effect of model selection, as an integral part of the detection framework,

is also analyzed.

1.4 Literature review

Multisensor signal processing may be viewed as a subset of the broader field of information

fusion. Centralized formulations, where raw observations are available at the processing unit

or fusion center, for several inference tasks are well known and available in standard text-

books [12, 47, 94]. Distributed inference, on the other hand, relies on the availability of a

network that can either transmit local inferences/quantized measurements to the fusion cen-

ter or arrive at a consensus solution by locally exchanging compressed/quantized information.
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While research in this area has forked in various directions, the problems addressed can be cat-

egorized as either distributed detection [98] or decentralized estimation (e.g., see [66, 71, 78]

and references cited therein).

This section reviews recent progress that has taken place in the field of multisensor signal

processing, and focuses on developments where dependence information plays a significant

role in the design. The aim of the discussion, as presented, is to motivate the relevance of our

research presented in this dissertation. One of the major themes explored in this dissertation

is the concept of statistical dependence. Therefore, this section discusses the literature in the

context of different types of dependence models that have been employed over the years. The

emphasis on dependence notwithstanding, the literature is quite extensive, and instead of being

exhaustive, we concentrate on highlighting newer developments.

1.4.1 Dependence as covariance

Modeling dependence as a covariance matrix (or equivalently a correlation matrix) is arguably

one of the most popular ways of characterizing dependence. It defines the dependence of

jointly normal random variables and describes the linear dependence between random variables

that possess a finite second moment. Due to the inherent simplicity associated with the use of

second order statistics such as the correlation coefficient, it has been applied in various contexts

in both centralized and distributed inference schemes.

Centralized schemes for correlated sensor observations

In the centralized paradigm, covariance-based dependence modeling is used extensively to

model the dependency information for array signal processing applications, especially where it

is reasonable to assume linearity of the medium of signal propagation. The most recent applica-

tions where these concepts of array signal processing have been applied are MIMO radar [59]

and joint blind source separation (JBSS) [4], among others. In MIMO radar, several antenna
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elements are used to transmit multiple probing signals that may be correlated or uncorrelated

with one another. While traditional blind source separation problems are formulated using a

single dataset, JBSS formulations are useful when analyzing multiple datasets as a group. An

example of this is separating speech and audio signals in multiple frequency bands.

The fusion of EEG with fMRI data for the detection of schizophrenia is discussed by Cor-

rea et al. [19] where the brain tissue is modeled as a mixing channel, and hence the information

fusion problem is posed as a JBSS problem and is solved using an approach based on multivari-

ate canonical correlation analysis [48]. Canonical correlation analysis (CCA) is a technique

which transforms the data matrix in such a way that it maximizes the amount of correlation

between the entities exhibiting statistical dependence. It has also been used for audio-video

fusion: Slaney and Covell [86] use CCA to measure the synchrony between acoustic features

and video frames, while Kidron et al. [49] consider a CCA based approach to determine pixels

in images that exhibit maximal correlation with the acquired audio signal.

Distributed inference using correlated data

Optimal schemes for distributed inference with correlated observations has also been a topic of

considerable interest. In the case of distributed detection, it has been shown that the likelihood

ratio based quantizer, which was optimal under the assumption of conditional independence,

is no longer optimal when correlation is taken into account. Examples of the consequent loss

in performance are provided by Aalo and Viswanathan [1]. In fact, earlier work by Tsitsiklis

and Athans [97] has shown that the distributed detection problem with dependent observations

is NP-complete. One way to get past the computational intractability is to assume some prior

knowledge about the joint statistics: Drakopolous and Lee [25] examine the fusion rule for

distributed detection under dependence by considering that the correlation coefficient is known,

whereas Kam et al. [44] use the Bahadur-Lazarsfeld expansion of probability density functions.

Willett et al. [107] study the problem of distributed detection of a mean shift in corre-
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lated Gaussian noise and establish how the nature of correlation affects the optimum fusion

rule. They conclude that even for a simple two-sensor and linear correlation formulation the

distributed detection problem “exhibits apparently very complicated behavior.” For this mean

shift in correlated Gaussian noise problem, local quantizers designed using the likelihood ra-

tio test (LRT) are, in general, not optimal. Willet et al. show that determining the parameter

regions where this optimality may hold is itself a challenging task: while the optimality of

the LRT can be determined for certain parameter regions, the problem is mostly intractable

for other regions. Chen et al. [16] have recently proposed a more general formulation this

problem. They introduce a hidden variable that induces conditional independence among the

sensor observations so that many more distributed detection problems with dependent obser-

vations become tractable. This new framework allows for the identification of several classes

of distributed detection problems with dependent observations whose optimal decision rules

resemble the ones for the conditionally independent case. The new framework induces a de-

coupling effect on the forms of the optimal local decision rules for these problems, much in

the same way as the conditionally independent case. This is in sharp contrast to the general

dependent case where the coupling of the forms of local sensor decision rules often renders the

problem intractable. Such decoupling enables the use of, for example, the person-by-person

optimization approach to find optimal local decision rules. The two cases of distributed detec-

tion, deterministic signal in dependent noise, and detection of a random signal in independent

noise, have become tractable under this new framework.

The decentralized estimation problem with correlated observations has been studied by

Fang and Li [30]. They consider a power constrained wireless sensor network [92] and ex-

amine power allocation for spatially correlated sensor observations. Each sensor transmits a

possibly nonlinear function of the parameter of interest, ✓, that is corrupted by additive, corre-

lated Gaussian noise. Bandwidth constrained formulations requiring quantized transmissions

to the fusion center are also considered by Ribeiro and Giannakis [78]. However, they con-
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sider a linear observation model, with ✓ being deterministic but unknown, and hence the sensor

observations are conditionally independent. Krasnopeev et al. [52] present a distributed esti-

mation scheme for the problem xi = ✓ + ni, where xi is the measurement of sensor i and the

noise n = [ni] is a multivariate Gaussian random vector which is correlated spatially across

sensors. The covariance is assumed to be known at the fusion center. We note that all these

problems are considered to be distributed since each local sensor transmits some local estimate

of ✓, which in its simplest form is the noise corrupted parameter itself. These formulations

do not consider local, inter-node communication; the implications of this local communication

aspect have been recently investigated by Kar et al. [46].

1.4.2 Nonlinear dependence: nonparametric approach

Nonparametric approaches to multisensor signal processing have been very popular in applica-

tions where it is infeasible to model a priori the complex dependencies that may exist between

the signals/features acquired by the sensors. These methods, in essence, estimate or learn the

joint distribution across sensor measurements directly from the data.

Machine learning techniques fall under this framework and are applicable largely when it

is feasible to control environment variables in such a way that a representative training dataset

may be collected. While this is apparently a stringent requirement, often with some prepro-

cessing, a significant amount of information can be extracted from sensor observations. This

has led to the successful application of machine-learning techniques for a wide variety of prob-

lems. Learning based methodologies have been successfully applied to multibiometric sys-

tems [11, 79]. Multibiometric systems achieve superior personnel identification performance

by fusing information from two or more biometric modalities. The learning-based approach

has also been popular for solving several object classification tasks [43,64] and have tradition-

ally focused on security and surveillance applications [58, 111]. Recently, challenges unique

to emerging technologies such as ubiquitous and human-centered computing have led to new
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research in areas such as object tracking and affect recognition [108, 109].

When viewed from an information fusion perspective, nonparametric designs offer tangible

advantages over methods described in Section 1.4.1. Fusion of heterogeneous or multimodal

information is possible since disparate modalities are not constrained to a multivariate normal

approximation. For example, Butz and Thiran [14] use the mutual information and joint en-

tropy between audio and video data as a measure of dependence; the joint density required for

the computation of these quantities is estimated from the data using the nonparametric Parzen’s

estimator [102]. Graphical models such as Bayesian networks generalize hidden Markov mod-

els and have also been successfully used for audio-visual tracking [8, 22, 43]. Algorithms for

distributed fusion using graphical models have been developed by Çetin et al. [15].

1.4.3 Nonlinear dependence: copula-based approach

As indicated earlier, we employ copulas to characterize joint distributions. Copulas are para-

metric functions that couple univariate marginal distribution functions to the corresponding

multivariate distribution function. A copula-based formulation is attractive because the spa-

tial correlation among sensor observations can get manifested in several different, potentially

non-linear ways and many families of copula functions have been specified in the literature to

address this issue. Further, while nonparametric formulations are known to converge to the true

distribution asymptotically, they also suffer from scalability issues stemming from the curse of

dimensionality. Recently, considerable progress has been made in the study of copulas and

their applications in statistics. The usage of copulas is widespread in the fields of economet-

rics and finance [17] and they are beginning to be used in the signal and image processing

context [23, 39, 63, 89].

In the fusion context, the use of copulas can be first found, in the operations research

context, in a paper by Jouini and Clemen [42]. They propose a copula-based method for the

aggregation of expert opinions. They take a Bayesian approach in their formulation: they con-
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sider Bayesian decision-makers who make subjective assessments about the observed process.

This subjective assessment is encoded as a univariate marginal distribution, which is combined,

along with the assessments of other experts using a copula. In order to elicit the copula pa-

rameter, they propose a multivariate extension of Kendall’s tau as a measure of dependence

between multiple experts.

Sundaresan et al. [88] first considered the case of distributed detection for dependent ob-

servations, using a copula based framework. They derived the optimum fusion rules for a

Neyman-Pearson detector. In their work, they found that the fusion rules under copula-based

dependence have a similar form as the Bahadur-Lazarsfeld expansions, proposed by Kam et

al. Sundaresan and Varshney [87] also design and analyze the performance of a copula-based

estimation scheme for the localization of a radiation source.

Iyengar et al. [36] have investigated the general framework of copula-based detection of a

phenomenon being observed jointly by heterogeneous sensors. They quantify the performance

loss due to copula misspecification and demonstrate that a detector using a copula selection

scheme based on area under the receiver operating characteristic (ROC) can provide significant

improvement over models assuming independence. Their results on a NIST multibiometric

dataset show that the copula based approach is versatile and can fuse not only heterogeneous

sensor measurements, but can also be applied to fuse different algorithms. The tractability

issue of fusing dependent quantized data is addressed by Iyengar et al. [37]. In this paper, the

authors found that injecting a suitably designed noise variable, the optimum fusion rule can

be approximated for a minimum level of distortion. The problem of intractability, due to the

presence of multiple coupled integrals, is reduced to a problem of multiplying characteristic

functions, similar to the way in which frequency selective filtering is done.
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1.5 Contributions and organization

The main contributions of the research results presented in this dissertation to the signal pro-

cessing and information fusion literature, are as follows:

• A data-collection procedure was designed and executed to create a dataset of footstep

signals obtained using seismic sensors. The data can be used for data-driven problem-

specific tasks such as investigating procedures for indoor personnel occupancy detection

and activity classification. It also serves as an example of heavy-tailed data exhibiting

spatio-temporal dependence.

• The theory of detection for dependent ↵-stable signals is studied using a copula-based

approach for dependence characterization. Issues such as model nesting and model se-

lection are studied in depth. We derive the necessary and sufficient conditions for mul-

tivariate model nesting using a copula-based approach for distribution modeling. We

also derive asymptotic results for the probabilities of false-alarm and detection, for both

nested and non-nested hypotheses for detecting dependent heavy tailed observations.

• A vine-based approach is proposed for modeling multisensor dependence. Using bivari-

ate copula building blocks, the vine-based approach allows us to construct multivariate

models free of symmetry constraints. The effect of model selection and node ordering is

investigated in the context of footstep detection. A tail-dependence motivated algorithm

is presented for establishing a node order for the base tree in the vine.

In Chapter 2, we discuss the data-collection process. The data was collected from a linear

array of geophone seismic sensors. This chapter describes the sensor and data-acquisition

hardware and also the data collection procedure. The heavy-tailed nature of the footstep data

provides the motivation for considering detection schemes tailored specifically for dependent

heavy-tailed data.
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Chapter 3 explores the background on statistical dependence and introduces copula the-

ory. Measures of dependence, other than the correlation coefficient, are surveyed and their

connections to copula functions are also summarized.

Chapter 4 examines the problem of detection of dependent ↵-stable signals. We use the

class of ↵-stable distributions to characterize the heavy-tailed nature of these signals. For typi-

cal applications, sensors make simultaneous measurements of a given phenomenon, and hence

these heavy-tailed realizations are dependent across sensors. The inter-sensor dependence is

modeled using copulas. We consider a two-sided test in the Neyman-Pearson framework and

present an asymptotic analysis of the generalized likelihood test (GLRT). Both, nested and

non-nested models are considered in the analysis. The performance of the proposed scheme is

evaluated numerically on simulated data, as well as the indoor seismic data described in Chap-

ter 2. With appropriately selected models, our results demonstrate that a high probability of

detection can be achieved for false alarm probabilities of the order of 10�4. While the theory

presented in this chapter is valid for multiple-sensor deployments, we consider a two-sensor

case for ease of exposition.

In Chapter 5, we address copula construction and model selection issues for the multi-

sensor (i.e., multivariate) case. Using the Neyman-Pearson approach, we show that accounting

for multivariate dependence leads to significant improvement over a bivariate approach, within

the copula framework. The tree-based technique of vines are used for modeling the dependence

across multiple sensors. The vine based approach is able to model asymmetric dependence

between sensor observations.

Chapter 6 discusses the results obtained when the copula-based detection scheme is applied

on outdoor data. The outdoor data was provided by the U. S. Army Research Laboratory (ARL)

and was collected close to the southwest US border. The chapter discusses the results obtained,

for footstep detection, when seismic data was fused with acoustic data.
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Chapter 7 summarizes the salient concepts explored in this dissertation and examines di-

rections for future research for copula-based inference.
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CHAPTER 2

INDOOR SEISMIC DATA - ACQUISITION

AND ANALYSIS

As indicated in Chapter 1, the research considered in this dissertation is motivated by appli-

cations where, due to various considerations, only one-dimensional signals are available, such

as seismic or acoustic signals. In order to obtain a dataset that is representative of such ap-

plication scenarios, we collected seismic data by deploying an array of geophone sensors in a

typical indoor office environment. The performance of the proposed detectors, in Chapter 4

and Chapter 5, will be evaluated on the data thus collected. This chapter discusses the physical

characteristics of the sensors and the data collection hardware in Section 2.1, and a description

of the experiments for collecting the background and footstep data is provided in Section 2.2.

2.1 Sensor description and setup

Six GS 20DX geophones were used for the experiments. The electrical details of a typical sen-

sor [31] are depicted in Figure 2.1(b) and the frequency response curve is depicted in Figure

2.1(c). Transduction is achieved by means of a moving coil over a magnetic core. The geo-



19

phones are designed to be floor mounted. Floor to sensor contact was achieved by means of a

coupling bolt screwed to the sensor, which was held to the floor by means of a tripod base. This

was done since tight coupling was not feasible as it requires structural penetration by means of

a probe.

The sensors constitute a wired suite and are connected to a data-acquisition system (DAQ).

The DAQ is essentially an AD converter with preset amplification and low level software for de-

vice control. The DAQ used for these experiments was a model PDL-MF: a PCI data-acqusition

device developed by United Electronic Industries, Walpole, MA. The data-acquisition card pro-

vides for 8 analog input channels with an overall sampling rate of 50,000 samples/s and 16-bit

quantization. At its maximum preset amplification factor of 10 it can faithfully (i.e., without

clipping) digitize a signal of amplitude ±1V. While lower amplifications can accommodate a

wider range of signal amplitude, this setting was selected as footsteps generate a voltage swing,

in each sensor, of the order of only a few mV.

The DAQ was programmed, using a C++ library provided by the manufacturer, to acquire

data at 5kHz. The DAQ was programmed on a non-real-time operating system (Microsoft

Windows XP Professional) and therefore, file I/O operations for a 5kHz sampling rate is a

challenging task. Sequential read-write execution leads to the read buffer in the AD converter

getting filled up before the acquired data can be written, leading to data loss. This problem

exists in spite of the manufacturer providing a large capacity circular buffer. The problem was

solved by programming the read and write operations to execute as parallel threads.

2.2 Experiments

The six sensors were configured as a linear array. They were placed along the long edge of

a hallway (see Figure 2.2). Data was collected in two (different) building hallways of similar

construction. The sensors were placed along the long edge of the hallway. The distance be-

tween adjacent sensors was maintained at 5ft. The rationale for selecting a sampling rate of
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(a)

(b)

(c)

Fig. 2.1: The GS 20DX geophone. (a) Sensor as housed and packaged (b) Electrical details:
cable length and sensor polarity (c) Frequency response curve.
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5kHz was so that, if necessary, high frequency information in the footstep data [29] could be

utilized for detection/classification. However, considering the frequency response curve of the

GS 20DX (see Fig. 2.1(c)) and the typical quasi-periodicity of footstep signals, the raw signal

was uniformly down-sampled to 1024 samples/second.

Background data was collected by leaving the sensors in an isolated environment. Back-

ground data is approximately of a 4 minute duration. Multiple persons participated in the

footstep data collection. The footstep data collected consists of 120 single-person trials (i.e.,

a given trial has exactly one participant walking along the hallway) and 120 two-person trials

(a given trial has exactly two participants walking along the hallway). Each dataset consists

of 60 trials from Building 1 and 60 trials from Building 2. The approximate duration of the

data collected per trial is 12 seconds. The background and footstep signal from a single person

trial are graphed in Fig. 2.3 and Fig. 2.4 respectively. In the following section, some analysis

on data collected is presented, the analysis focuses on the presence of nonlinearity and heavy

tailed behavior of the seismic data.

2.3 Preliminary data analysis

In this section, we present an analysis of the data. The nonlinear nature of the data is first ex-

plained. Signal nonlinearity, within the footsteps context, is strongly suggestive of a nonlinear

mixing medium of signal propagation. The tail behavior of the data is analyzed next, and we

demonstrate that the footstep data cannot be explained by a Gaussian or exponential tail-decay

model.

2.3.1 Nonlinearity analysis of observed data

A signal y(t) is said to be nonlinear if its current value cannot be predicted or expressed as

a linear function of its past values. Let i denote the sensor index, i.e., i = 1, 2, . . . , 6. Each
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Fig. 2.2: Sensor setup in one of the buildings.



23

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−2

0

2

x
1

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−2

0

2

x
2

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−5

0

5

x
3

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−1

0

1

x
4

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−1

0

1

x
5

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−2

0

2

SAMPLES

x
6

Fig. 2.3: Time series of the background signal.
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Fig. 2.4: Time series of a footstep trial. Nonstationarity and the impulsive nature of the signal
is evident.
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sensor observation, yi(t), is uniformly down-sampled to 1024 Hz. Each yi(t) is divided into

1 second overlapping frames. Denote by Tr, the set of all time instants contained in the rth

frame. Therefore, the cardinality of Tr, |Tr|, is 1024. The inter-frame overlap was set to 50%.

The method of surrogate data [82] is used to analyze the acquired seismic time series for

the presence of nonlinearity. The null hypothesis states that the original time series is a real-

ization of a linear Gaussian process (or monotonic transforms thereof). The idea is to generate

a set of time series (surrogate data set) by resampling from the original measurements so that

linear statistical properties of the original data are preserved in the surrogate data set. These

surrogates are then, in essence, samples from a population consistent with the null hypothesis

of linearity and can be used to estimate the distribution of a test statistic that can discrimi-

nate between the null (linearity) and alternative (nonlinearity). This statistic is computed for

both the surrogate data and the original time series. If the statistic computed on the original

time-series lies (significantly) in the tail of the distribution of the statistic corresponding to the

surrogate, the null is rejected.

Following Schreiber [82], a third order statistic,

�rev
=

1

N � 1

N
X

n=2

(y[n]� y[n� 1])

3, (2.1)

is used to test for nonlinearity in our analysis. Here y[n] is the sampled version of y(t) and N

is the number of samples in the r-th frame. A known property of a linear Gaussian process is

that its statistics are symmetric under time reversal [103]; �rev measures the asymmetry of a

series under time-reversal [82].

Each frame of yi(t) (for all i) is tested for the presence of nonlinearity as follows. Forty

surrogates, sk(t) : k = 1, 2, . . . , 40, are generated from a given frame of the original time

series yi(t) using the iterative amplitude adjusted Fourier transform (IAAFT) [82]. The IAAFT

algorithm is based on the amplitude adjusted Fourier transform (AAFT) algorithm [93], which

samples from a normal distribution and the sampled sequence is ranked and scaled so that the
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Fig. 2.5: Test for nonlinearity. Histogram is generated using the surrogate data. The statistic
of the original time series is represented by the solid line labeled �rev

y .

amplitude spectra of the surrogates matches that of the frame under test while randomizing the

phase uniformly between 0 and 2⇡. Schreiber notes that the AAFT algorithm is correct only

asymptotically: it generates surrogates that are linear and have the same amplitude probability

distribution (APD) as the original time-series as N ! 1. The IAAFT algorithm, proposed

in [83], iterates between amplitude adjustment and phase randomization until the surrogates

and the original data have the same APD. The statistic in Eq. (2.1) is then computed for both

the surrogates and the test data. For example, consider Fig. 2.5. The solid line indicates the

value of �rev
y , the statistic computed for sensor data corresponding to a frame from the walking

trials. The histogram of �rev
s , computed for the corresponding surrogates is also shown. It is

evident that the footstep signal has a nonlinear structure to it as �rev
y does not lie within the

distribution of the null hypothesis corresponding to linearity. Thus, the null hypothesis can be

rejected.

Each frame of the footstep signal is tested for the presence of nonlinearity at 0.05 signifi-

cance level (↵ = 0.05) using a rank order test proposed by Theiler et al. (see Section 2.1, [93]).
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Table 2.1: Percentage of frames detected as nonlinear.

Sensor Footstep data
i 1 s frame 2 s frame

1 25 20
2 19 26
3 12 14
4 11 11
5 17 20
6 19 24

The case when the frames are two seconds in duration is also considered and results are summa-

rized in Table 2.1. We observe that a significant proportion of the walking frames are detected

as nonlinear. However, the exact nature of the nonlinearity is not known and is difficult to

ascertain. This, is also a different characterization of the nonstationarity present in the data,

and therefore, motivates the use of semiparametric methods of inference with such data. We

also compared the values of �rev obtained for the footstep and background data. The standard

tests for normality, such as the Jarque-Bera test, confirm that the background data are normally

distributed. After standardizing the footstep and background time-series data, values of �rev

are computed over 1s and 2s frames. In Table 2.2, ¯�rev, the mean value of �rev over the total

number of frames, along with the standard error (SE�̄rev) are shown for both frame durations.

Similar to what we observe in Fig. 2.5, the numbers reveal that for a linear Gaussian process,

values of ¯�rev are close to zero with narrow standard errors, implying that the values of �rev

are spread about a narrow interval centered about 0. Values of �rev for the footstep data, on the

other hand, lie significantly outside this region and are almost an order of magnitude greater

than the typical ¯�rev values for linear Gaussian processes. However, since ¯�rev estimates for

footstep data also possess larger standard errors, several time-series frames are classified as

“linear” as seen in Table 2.1.



28

Table 2.2: Comparison of values of ¯�rev with [SE�̄rev] for Footstep and Background data

Sensor Background Footstep
i 1 s frame 2 s frame 1 s frame 2 s frame

1 �0.0050 �0.0035 �0.0185 �0.0115
[12.67 · 10�5

] [5.4 · 10�5
] [6.1 · 10�4

] [3.5 · 10�4
]

2 0.0005 0.0004 0.1557 0.0938
[1.6 · 10�5

] [0.8 · 10�5
] [4.6 · 10�3

] [2.7 · 10�3
]

3 ⇡ �10

�5 ⇡ �10

�5
0.0120 0.0139

[2.2 · 10�5
] [1.3 · 10�5

] [4.3 · 10�4
] [2.9 · 10�4

]

4 �0.0010 �0.0013 0.0205 0.0248
[2.7 · 10�5

] [1.8 · 10�5
] [7.2 · 10�4

] [4.9 · 10�4
]

5 �0.0003 �0.0003 0.0147 0.0176
[2.3 · 10�5

] [1.3 · 10�5
] [6.3 · 10�4

] [4 · 10�4
]

6 �0.0080 �0.0084 0.0056 0.0079
[7.6 · 10�5

] [6.1 · 10�5
] [5.2 · 10�4

] [3.1 · 10�4
]

2.3.2 Tail behavior of the seismic data

We have also analyzed the collected seismic data for the tail behavior. The background data

show the presence of exponential tails, and the footstep data show the presence of heavy tails

which decay at a polynomial rate. An example of this tail behavior is shown in Fig. 2.6 and

Fig. 2.7. We observe that not only do the tails of the background data have exponential decay,

but they do this at a slightly sub-Gaussian rate. This can be explained considering the physical

nature of the geophone, which damps sudden (discontinuous) excursions of the signal. An

idea of this behavior can also be inferred from the frequency plot of the sensor in Fig. 2.1,

which shows a damped response in the high-frequency regime. On the other hand, the heavy-

tailed behavior of the footstep data is clearly visible in Fig. 2.7. In fact, we can even infer a

polynomial decay in the tails of the footstep data. Note that for any distribution decaying at

a polynomial rate in the tails, i.e., as |x|�↵�1, the logarithm of this, i.e., �(↵ + 1) log |x| will

saturate for extreme values of x. This is precisely the behavior we observe in the p.d.f. plot
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Fig. 2.6: Probability distribution of the background data from Sensor 5, compared to the
p.d.f. of normal distribution with the same second-order moments as the background data. The
Y -axis is plotted on a logarithmic scale.

for footstep data, where the Y -axis is plotted on a logarithmic scale. The significance of a tail

decay rate of |x|�↵�1 is explained in Chapter 4.

2.4 Other datasets

The research in this dissertation took place in collaboration with US Army Research Laboratory

(ARL). In this effort, we also collected data using the unattended ground sensor (UGS) suite at

ARL, at Adelphi, MD. Additional data, for an outdoor scenario, was collected by ARL near the
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southwest US border. The copula-based methods, proposed in Chapters 4 and 5, have also been

applied to these datasets. For the purpose of demonstrating our detection methodology on real

sensor data, in this dissertation, we focus on the results obtained using the dataset described

in this chapter. However, we have applied similar methods to the indoor and outdoor ARL

datasets and results based on these data are discussed in Chapter 6.

2.5 Summary

In this chapter we analyzed the nature of seismic data collected using geophone sensors in

an indoor environment. The analysis revealed that the data corresponding to footstep activity

exhibits temporal nonlinearity, with heavy-tailed behavior. The background data, on the other

hand, are approximately normal. Time series plots of the footstep data also reveal that the

data are spatially dependent, but signal nonlinearity will imply that the statistical dependence

exhibited by the data will not be explainable by simple models. A more sophisticated under-

standing of statistical dependence is required, and appropriate models must be used for any

sort of inference done using such data. While we have demonstrated the existence of complex

spatio-temporal behavior using footstep data, such signal characteristics can be seen in other

types of data too. The analyses presented in this chapter, therefore, motivate our research ap-

proach in this dissertation. We address the general theory of detecting such spatially dependent

heavy-tailed data, and return to the footstep data example to apply our proposed methods.
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CHAPTER 3

STATISTICAL DEPENDENCE AND

COPULA THEORY

Chapter 1 reviewed the recent research on signal processing for stochastically dependent obser-

vations. As noted in Section 1.4, parametric, semi-parametric and non-parametric techniques

of dependence characterization have been extensively studied, and they find utility in a variety

of applications. As a consequence, research that includes the consideration of dependence in

various disciplines such as machine learning, information theory, speech processing, finance,

and aerospace, among others, has led to a rich body of literature. Dependence modeling, in this

dissertation, is based on copula theory, which can be categorized as either a parametric or semi-

parametric approach to dependence modeling, depending on the formulation being considered.

In this chapter, concepts and measures of dependence are discussed (Section 3.1), followed by

an overview of copula theory (Section 3.2).
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3.1 Bivariate statistical dependence

The topic of stochastic dependence has been studied extensively since Karl Pearson first de-

fined the product-moment correlation. This section discusses several concepts and measures of

bivariate dependence that have since sought to generalize Pearson’s correlation coefficient. The

focus on bivariate dependence is due to the fact that many concepts of multivariate dependence

do not carry over as a simple extension of the bivariate case. Further, when exploring the idea

of multivariate dependence, we use a pairwise scheme, in Chapter 5, based on the concept of

vines. The topics covered here summarize a more detailed treatment of dependence concepts

by Balakrishnan and Lai (see [7], Chapter 3 and Chapter 4). The discussion that follows in

the next section will show how a copula-based characterization of joint distributions relates to

these generalized descriptions of dependence.

3.1.1 Positive and negative dependence

For two continuous random variables, X and Y , positive dependence implies that large/small

values of Y tend to accompany large/small values of X . In contrast, negative dependence im-

plies that large/small values of Y tend to accompany small/large values of X . We discuss only

concepts that are derived from positive dependence, since the negative dependence counter-

parts are analogous. Further, if the pair (X, Y ) has a positive dependence, then (X,�Y ) has

negative dependence on R2. If there exists a constraint of positivity, (X, 1 � Y ) has negative

dependence on the unit square. An important point to note is that while one may define posi-

tive dependence for the multivariate case, negative dependence is no more a mirror reflection of

positive dependence. Six basic conditions describing positive dependence have been discussed

in the literature [55]. These are enumerated below in the increasing order of stringency.

1. Positive correlation. Defined for positive linear correlation, i.e., cov(X, Y ) � 0.

2. Positive quadrant dependence (PQD). P(X > x, Y > y) � P(X > x)P(Y > y), or
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equivalently, P(X  x, Y  y) � P(X  x)P(Y  y).

3. Association. X and Y are said to be positively associated if for every pair of functions

a and b defined on R2 which are increasing in each of the arguments separately,

cov[a(X, Y ), b(X, Y )] � 0.

Lai and Xie note that a direct verification of association is difficult [55]. It is often

simpler to verify one or more of the conditions to follow, which are more stringent, and

thus, imply association.

4. Tail dependence. Y is right-tail increasing in X , denoted as RTI(Y |X), if P(Y >

y|X > x) increases in x for all y. Similarly, Y is left-tail decreasing in X , written as

LTD(Y |X) if P(Y  y|X  x) decreases in x for all y.

5. Stochastically increasing (SI). Y is said to be stochastically increasing in x for all y,

SI(Y |X), if for every y, P(Y > y|X = x) is increasing in x. SI(X|Y ) can be defined in

a similar manner. If Y is SI in X , E(Y |X = x) is also increasing in x.

6. Total positivity of order 2. Let X and Y have a joint density f(x, y). Then f is said to

be totally positive of order 2 (TP2) if for all x1 < x2, y1 < y2,

f(x1, y1)f(x2, y2) � f(x1, y2)f(x2, y1)

TP2 is also referred to as X and Y being likelihood ratio dependent (LRD).

Since these conditions were listed in the increasing order of stringency, (6) ) (5) ) (4) )
(3) ) (2) ) (1). When the inequality signs of the relations described in (1) through (6) are

reversed, we obtain analogous negative dependence concepts. Specifically, the duals of (2),

(4), (5) and (6) are respectively called negative quadrant dependent, right tail decreasing/left
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tail increasing dependence, stochastically decreasing dependence and reverse regular of order

2.

3.1.2 Measures of dependence

Measures of dependence quantify, in some particular manner, how closely the variables X and

Y are related. Since a single number alone cannot completely explain the nature of depen-

dence, a variety of measures are defined and used. The following list is not comprehensive, but

represents some of the more important measures of dependence that have been proposed.

1. Pearson’s correlation. This is a well studied measure in statistics and is presented here

for completeness. Pearson’s coefficient of correlation is given by,

⇢ =

cov(X, Y )

p

var(x) var(Y )

It may be noted that ⇢ measures only the linear dependence. Furthermore, there exist

well-known examples where X and Y are dependent, but ⇢ = 0. For example, Melnick

and Tenenbein [62] have analyzed the following case. Let X ⇠ N (0, 1) and define Y

such that for � > 0

Y =

8

>

>

<

>

>

:

X if |X|  �

�X if |X| > �

(3.1)

We can verify that Y ⇠ N (0, 1), since

P(Y  t) = P(|X|  � ^X  t) + P(|X| > � ^ �X  t) (3.2)

= P(|X|  � ^X  t) + P(|X| > � ^X  t)

= P(X  t). (3.3)

where (3.2) follows from the symmetry of N (0, 1). Denote the p.d.f. of X as fX and
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CDF as FX . The correlation coefficient can be calculated as

⇢ = E[XY ] = 2

Z �

0

x2fX(x)dx� 2

Z 1

�

x2fX(x)dx

= 4

Z �

0

x2fX(x)dx� 1

(3.4)

Solving for � by setting ⇢ = 0 in (3.4), Melnick and Tenenbein have obtained � ⇡ 1.54;

for this value of �, in spite of X and Y being dependent, ⇢ = 0. Note that X and Y are

not jointly normal, i.e., fXY is not a bivariate normal p.d.f., and hence their dependence

structure is not completely explained by ⇢.

2. Mutual information. Mutual information between X, Y is defined as,

I(X;Y ) =

Z

R2

log

✓

fXY (x, y)

fX(x)fY (y)

◆

dFXY (x, y),

and it measures the distance between the joint density and the product of marginals,

i.e., the joint density if X, Y were independent. Multiinformation is the multivariate

extension of mutual information proposed by Joe [40]. For the vector X 2 Rn, n > 2,

I(X) =

Z

Rn

log

✓

f
X

(x)

Q

i fXi(xi)

◆

dF
X

(x).

A normalization of the form �⇤ =
p

1� exp(�2I) ensures that mutual information and

multiinformation follow Rényi’s postulates [77] for “an appropriate measure of depen-

dence”. In particular, �⇤ 2 [0, 1].

3. Rank correlations. Rank correlations measure the dependence between rankings, rather

than between actual values, of X and Y . Therefore, rank measures are unaffected by any

increasing transformation of X and Y , while ⇢ is unaffected only by linear transforma-

tions. Kendall’s tau (⌧ ) and Spearman’s rho (⇢S) are widely used measures that fall in this

category. For independent pairs of random variables (X1, Y1) and (X2, Y2) having the
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same distribution as (X, Y ), concordance is defined as the condition that (X1�X2)(Y1�
Y2) � 0 and discordance is defined as the condition that (X1 � X2)(Y1 � Y2) < 0.

Kendall’s tau is defined to be the difference between the probabilities of concordance

and discordance:

⌧ , P[(X1 �X2)(Y1 � Y2) � 0]� P[(X1 �X2)(Y1 � Y2) < 0].

This definition is equivalent to,

⌧ = cov[sgn(X1 �X2), sgn(Y1 � Y2)].

Kendall’s tau is also a measure of total positivity: ⌧/2 represents an average measure of

the total positivity for fXY , the joint density of X and Y .

Spearman’s rho is defined as follows. Let (Xi, Yi), i = 1, 2, 3 be three independent pairs

of random variables with a common distribution function. Then,

⇢S , 3 {P[(X1 �X2)(Y1 � Y3) � 0]� P[(X1 �X2)(Y1 � Y3) < 0]} .

Spearman’s rho represents an average measure of quadrant dependence: ⇢S � 0 )
(X, Y ) are PQD.

4. Blomqvist’s �. This measure evaluates the dependence at the center of a distribution,

where the center is defined by (x̃, ỹ), the medians of the two marginals. Hence, � is also

referred to as the medial correlation coefficient. Blomqvist’s � is defined as,

� = 2P[(X � x̃)(Y � ỹ) > 0]� 1 (3.5)

5. Local measures of dependence. Anscombe’s quartet refers to four datasets that have
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identical coefficients of correlation for four different sets of (X, Y ) data pairs [5]. All

four sets of data also have identical first and second order moments. While first con-

structed to demonstrate the importance of graphing data before analyzing it, the dataset

also reveals the global nature of ⇢, i.e., it is defined from the second moment, which

is in turn an expectation evaluated over the entire plane. In other words, while global

summary statistics are useful descriptors of the data, they often fall short of providing

a complete picture about the true variability that exists in the data set. In fact, all of

the above measures are global measures. Pairs (X, Y ) and (X 0, Y 0
) can have different

distributions and yet have the same global measure. A local measure of dependence will

allow one to compare the variation of dependence between the two pairs. Several local

measures of dependence have been proposed in the literature, mostly as an extension of

global dependence measures. Some of them are listed below.

• Local correlation coefficient. Let µ(x) = E(Y |X = x), �2
(x) = var(Y |X = x)

and �(x) = @
@x
µ(x). The local correlation coefficient is then defined as

⇢(x) =
�X�(x)

[�X�(x)]2 + �2
(x)

,

where �X is the standard deviation of X . When defined in this manner, ⇢(x) shares

a few properties with its global counterpart: it takes values between 1 and -1, in-

dependence of X and Y implies that ⇢(x) = 0 and ⇢(x) = ±1 for almost all x

is equivalent to Y being a function of X . It is also invariant to scaling, but is not

marginal free. The latter point means that if we define U = FX(x) and V = FY (y),

the resulting ⇢(u) is different from ⇢(x).

• Local ⌧ and ⇢S . Local measures of rank correlation exist, and are evaluated on an

open neighborhood about a point of interest, (x0, y0). The functional form is more

easily defined using copulas, and is deferred to Section 3.2.
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• Local measure of LRD. An index that can be used to measure likelihood ratio de-

pendence (LRD) locally is the second order partial derivative of the logarithm of

the density function,

�(x, y) =
@2

@x@y
log fXY (x, y).

Recall that saying X and Y are LRD is synonymous with stating that fXY (x, y) is

TP2. It can be shown that �(x, y) � 0 8x, y , fXY (x, y) is TP2. This index has

several attractive properties; significantly, �(x, y) = 0 if and only if X and Y are

independent. Furthermore, �(x, y) is marginal-free.

3.2 Copula theory

Copulas, typically defined as cumulative distribution functions (CDF), are parametric func-

tionals that associate or “couple” disparate univariate marginal distributions to a multivariate

distribution. The parametrization quantifies the dependence between the random variables over

which the copula is defined. The dependence parameter is not explicitly specified in this sec-

tion and is introduced in Section 4.2.2, as it is more relevant in the context of inference. Sklar’s

theorem is an important result and specifies the framework necessary for copula-based infer-

ence [65]. Without loss of generality, the random variables are defined over R , [�1,1].

Theorem 3.1 (Sklar’s Theorem). A cumulative distribution function, FZ , is defined over the

n-dimensional random vector Z = [Z1, Z2, . . . , Zn]
T for which the corresponding marginal

distribution functions are FZ1 , FZ2 , . . . , FZn . There exists a copula C, such that for all Z 2 Rn,

FZ(z1, . . . , zn) = C(FZ1(z1), . . . , FZn(zn)) (3.6)

If FZi is continuous for 1  i  n, then C is unique, otherwise it is determined uniquely on

RanFZ1 ⇥ . . .⇥RanFZn where RanFZn is the range of FZn . Conversely, given a copula C and
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univariate distributions FZ1 , . . . , FZn , FZ as defined in (3.6) is a valid multivariate CDF with

marginals FZ1 , . . . , FZn .

Note that (3.6) implies that the copula function is a joint distribution of uniformly dis-

tributed random variables. As a direct consequence of Sklar’s Theorem, for continuous distri-

butions, the joint p.d.f. is obtained by differentiating (3.6),

fZ(z) =

(

n
Y

i=1

fZi(zi)

)

c(FZ1(z1), . . . , FZm(zn)) (3.7)

where z = [z1, . . . , zn]
T and c(·), called the copula density, is obtained as the mixed derivative

of C,

c(·) = @n

@u1 · · · @un

C(u1, . . . , un) (3.8)

where, ui = FZi(zi) ⇠ U(0, 1). Using (3.7), we can construct a joint density function with

specified marginal densities.

Note that C(·) is a valid CDF and c(·) is a valid p.d.f. for uniformly distributed random

variables, ui. Many different types of signals have well-understood marginal sensor models,

established either through physics-based theory or direct empirical evidence. An application

specific understanding of dependence, however, is more difficult. Various families of copula

functions, describing different types of dependence, have been proposed in the literature [65].

However, which copula function should be used for a given case is not very clear as different

copula functions may characterize different types of dependence behavior among the random

variables [60]. A brief summary of some popularly used copula functions is discussed next. In

the following discussion, for notational brevity, we denote the n-tuple (u1, . . . , un) as u.
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3.2.1 Summary of some copula functions

Copulas derived from distributions

Multivariate distribution functions specify dependence structures and copula functions can be

derived from them. Two such copula functions are the Gaussian and the t copula functions that

are derived from multivariate Gaussian and Student-t distributions respectively. Both specify

dependence using the correlation matrix and are given as follows.

The Gaussian copula is defined as

CN (u;⌃) = FN (F�1
N (u1), . . . , F

�1
N (un);⌃), (3.9)

where, FN (·;⌃) denotes the multivariate normal CDF with correlation matrix ⌃ and F�1
N de-

notes the inverse CDF of the standard normal. The corresponding copula density function

is

cN (u;⌃) =

1

p|⌃| exp
⇢

�1

2

!

T
(⌃� I)!

�

(3.10)

where ! = [!1, . . . ,!i, . . .!n]
T with !i = F�1

N (ui) and I is the identity matrix.

Similarly, the t-copula is defined as

Ct(u;⌃, ⌫) = t⌫,⌃(t
�1
⌫ (u1), . . . , t

�1
⌫ (un)) = t⌫,⌃(⇠1, . . . , ⇠n) (3.11)

where, t⌫,⌃ is the multivariate Student-t distribution with correlation matrix ⌃ and ⌫ degrees

of freedom and t⌫ denotes the univariate Student-t distribution with ⌫ degrees of freedom. As

⌫ ! 1, the t copula approaches the Gaussian copula. Let ⇠ denote the column vector of

⇠i 8 i, 1  i  n. The density function for the t-copula is given by

ct(u;⌃, ⌫) =
�

�

(⌫ + n)/2
�

�(⌫/2)n�1
�

1 + ⌫�1
⇠

T
⌃

�1
⇠

��(⌫+n)/2

p|⌃| �� (⌫ + 1)/2
�nQn

i=1 (1 + ⌫�1⇠2i )
�(⌫+1)/2

(3.12)
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Both the Gaussian and the t copula functions belong to the elliptical family of copulas.

Archimedean copulas

Archimedean copulas, describing an n-variate CDF, are defined as follows,

C(u;�) = #�1
�

 

n
X

i=1

#�(ui)

!

(3.13)

where, # : (0, 1] 7! [0,1) is a convex, strictly decreasing function with a positive second

derivative with #(1) = 0. This function # is referred to as the generator function and � is the

copula parameter specifying dependence. The inverse for the generator is defined as,

#�1
(s) =

8

>

>

<

>

>

:

#�1
(s) for 0  s  #(0)

0 for #(0) < s < 1
(3.14)

While for statistical inference, the copula density is more useful, it is more difficult to

derive a usable expression for every Archimedean copula. Using (3.8), we can write

c(u;�) = (#�1
� )

(n)

 

n
X

i=1

#�(ui)

!

n
Y

i=1

@

@ui

#�(ui) (3.15)

where the superscript (n) refers to the n-th order partial derivative over #�(ui). For a bivariate

Archimedean copula this resolves to

c(u1, u2) = �#00
�

�

C(u1, u2)
�

#0
�(u1)#

0
�(u2)

⇥

#0
�

�

C(u1, u2)
�⇤3 (3.16)

The Clayton, Frank and Gumbel copulas are commonly used examples of the Archimedean

copula family and are defined next.
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Clayton copula

The generator function for the Clayton copula is

#�(u) =
1

�

�

u�� � 1

�

� 2 [�1,1)\{0} (3.17)

and, therefore, the copula CDF is given by

CCl(u;�) =

 

n
X

i=1

u��
i � n+ 1

!� 1
�

, � 2 [�1,1)\{0} (3.18)

and the copula density function can be obtained upon differentiation as

cCl(u;�) = �n
�

⇣

1
�
+ n
⌘

�

⇣

1
�

⌘

 

n
Y

i=1

u���1
i

! 

n
X

i=1

u��
i � n+ 1

!� 1
��n

. (3.19)

Frank copula

The Frank copula uses the generator function

#�(u) = � log

exp{��u}� 1

exp{��}� 1

, � 2 R\{0} (3.20)

which leads to the associated copula CDF

CFr(u;�) = �1

�
log

✓

1 +

Qn
i=1 [exp{��ui}� 1]

exp{��}� 1

◆

, � 2 R\{0}. (3.21)

The n-variate copula density is difficult to derive. Archimedean copulas are more useful in

their bivariate form, and as we will see in Chapter 5, construction of multivariate copulas,

using bivariate elements, leads to a better model, in general. The bivariate copula density is
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given by setting n = 2 and twice differentiating the copula CDF in (3.21). Therefore,

cFr(u1, u2;�) =
�(1� exp{��}) exp{��(u1 + u2)}

[1� exp{��}� (1� exp{��u1})(1� exp{��u2})]2
. (3.22)

Gumbel copula

The function

#�(u) = (� log u)�, � 2 [1,1) (3.23)

generates the Gumbel copula CDF

CGu(u;�) = exp

8

<

:

�
 

n
X

i=1

(� ln ui)
�

!

1
�

9

=

;

. (3.24)

The for n = 2, we obtain the corresponding bivariate copula density function

cGu(u1, u2;�) =
C(u1, u1;�)

u1u2

⇥

(� log u1)
�
+ (� log u2)

�
⇤�2

(

1� 1
�)

[(log u1)(log u2)]
��1

⇥ {1 + (�� 1)[(� log u1)
�
+ (� log u1)

�
]

� 1
�}

(3.25)

In addition to these copulas, we also note that independence is also a valid Archimedean copula,

with � log u as the generator function.

3.2.2 Copulas and measures of dependence

For a joint bivariate CDF expressed as a copula, some interesting observations can be made

about the various measures of dependence introduced in Section 3.1.2. For the random pair
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(X, Y ), Kendall’s ⌧ and Spearman’s ⇢ are respectively expressed as the following expectations:

⌧ = 4E[C(FX(x), FY (y))]� 1 (3.26)

⇢S = 12E[FX(x)FY (y)]� 3 (3.27)

For the case of elliptical copulas, parametrized by the matrix ⌃ = [⇢⌃(i, j)],

⇢⌃(i, j) = sin

⇣⇡⌧ij
2

⌘

, (3.28)

where ⌧i,j is the Kendall’s ⌧ evaluated for the pair (Ui, Uj).

Blomqvist’s � defined in Eq. (3.5) can be expressed in terms of the bivariate copula, C, for

the pair (X, Y ) as,

� = 4FXY (x̃, ỹ)� 1 = 4C

✓

1

2

,
1

2

◆

� 1 (3.29)

Nelsen [65] notes that although � depends only on the value of the copula at the center of

[0, 1] ⇥ [0, 1], it can provide good approximations of ⌧ and ⇢S using, e.g., a Maclaurin series

expansion.

Local measures of dependence discussed earlier also reveal interesting properties when

expressed in terms of a copula. When the expectation is restricted to an open neighborhood

V (x0, y0) local forms of ⌧ and ⇢S are defined as,

⌧(x0, y0) = 4

ZZ

V (x0,y0)

C(u, v)dudv � 1 (3.30)

⇢S(x0, y0) = 12

ZZ

V (x0,y0)

(C(u, v)� uv)dudv (3.31)

In Section 3.1.2, a local measure of likelihood ratio dependence (LRD) was defined as

�(x, y) =
@2

@x@y
fXY (x, y)
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and it was noted that this measure is marginal free. Consequently, �(x, y) equals �(u, v), where

�(u, v) =
@2

@u@v
c(u, v), FX(x) = u, FY (y) = v, (3.32)

and c(u, v) is the copula density function for copula C.

3.2.3 Tail dependence coefficients as a measure of extremal depen-

dence

Extremal dependence is the characterization of statistical co-movement for extreme values of

multivariate data. In the context of bivariate data, tail dependence coefficients are a natural

measure of extremal dependence. Two measures, the upper and lower tail dependence coeffi-

cients, have been defined in the literature, and they measure the amount of dependence in the

upper and lower quadrant tails of the support of the random vector. Let [X, Y ] be a vector of

continuous random variables with marginal CDFs F and G. Let C(F (X), G(Y )) be a bivariate

copula distribution function. Then,

�U , lim

u%1
P(Y > G�1

(u)|X > F�1
(u)) (3.33)

= lim

u%1

1� 2u+ C(u, u)

1� u
(3.34)

�L , lim

u&0
P(Y  G�1

(u)|X  F�1
(u)) (3.35)

= lim

u&0

C(u, u)

u
(3.36)

Using these relations, one can show that, for the Gaussian copula

�L = �U = 2 lim

x!�1
FN

✓

x

p
1� ⇢p
1 + ⇢

◆

= 0
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The t-copula on the other hand exhibits non-zero upper and lower tail dependence, i.e.,

�L = �U = 2t⌫+1

✓

�p
⌫ + 1

p
1� ⇢p
1 + ⇢

◆

where t⌫+1 denotes the CDF of a univariate t distribution with ⌫+1 degrees of freedom. Hence,

for large values of ⇢ and small values of ⌫ the t-copula exhibits strong tail dependence.

3.3 Summary

In this chapter, we have seen that copulas are able to provide a complete characterization of sta-

tistical dependence, largely because of their functional nature. Additionally, for many families,

there exists a one-to-one relationship between the copula dependence parameters and nonpara-

metric rank-based measures of dependence, such as Kendall’s tau. The use of these measures in

inference leads to a large savings in computational effort, as compared to optimal approaches

such as maximum likelihood. The copula-based approach also allows us to characterize ex-

tremal dependence through the concept of tail-dependence. Selecting and using copulas that

possess non-zero tail-dependence plays an important role in inference problems. These issues

are discussed in further detail in the next chapter, in the context of inference using heavy-tailed

↵-stable sensor models.
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CHAPTER 4

DETECTION OF DEPENDENT

HEAVY-TAILED DATA

In this chapter, we take the first steps at formulating and deriving the theory for spatially de-

pendent heavy-tailed signals, using a copula-based approach for dependence modeling. When

extreme value measurements occur at a significantly greater frequency than is attributable to

distributions that decay exponentially in the tail, often polynomial tail-decay models provide

an appropriate fit. These models can accommodate the typical “spiky” signatures in the signal

measurements and such data are often said to be fat-tailed or heavy-tailed. Examples of such

data are seen in applications such as climatology [24], finance [99], and well-established signal

processing applications such as radar, communications and image processing [3, 13, 45]. The

co-occurrence of such (rare) extreme-valued data is sometimes symptomatic of a catastrophic

event, and its detection, therefore, needs appropriate modeling tools.

The heavy-tailed characteristics in these applications are often modeled using a class of

functions known as ↵-stable distributions. Excluding the Lévy, Cauchy and Gaussian distri-

butions, the ↵-stable family does not admit a closed-form probability density function (p.d.f.).

They are instead defined using characteristic functions [67, 81]. This chapter examines the
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problem of detection of spatially dependent ↵-stable signals. We consider a setup where the

data coming from all sensors are ↵-stable distributed, but are non-identically distributed. In

this sense, the sensors are heterogeneous. As discussed in Chapter 1, the cause for this hetero-

geneity could be multifarious.

4.1 Introduction

The ↵-stable model is motivated by the empirical observation that several non-Gaussian phe-

nomena exhibit a power-law decay model with a tail of the type |x|�↵�1, ↵ 2 (0, 2); ↵ is

referred to as the tail-index. Further, Gnedenko and Kolmogorov [32] proved a generalized

central limit theorem (CLT) for random variables that possess this power-law tail decay prop-

erty. This theorem states that the limiting distribution of the sum of power-law heavy-tailed

distributed random variables tends to the class of ↵-stable distributions. In addition to ↵, this

class of distributions has three additional parameters corresponding to location (�), scale (�)

and skewness (�). This allows for flexible modeling of various types of non-Gaussian data.

If � = 0, one obtains an important special case called the symmetric ↵-stable distribution,

often denoted as S↵S. A formal definition and brief introduction to the theory of ↵-stable

distributions is presented in Section 4.2.1.

Introductory discussions, from a signal processing perspective, on ↵-stable processes have

focused on independent and identically distributed (IID) formulations [6, 84]. Detection in

the presence of IID S↵S noise was investigated using Bayesian and Neyman-Pearson ap-

proaches [95, 96], where fractional lower order moments (FLOM) were used to estimate un-

known parameters. Kuruoğlu et al. [54] have used a mixture of Gaussian approximation for

S↵S noise. Swami and Sadler [91] used higher order statistics for estimating and detecting sig-

nals in S↵S noise with unknown parameters. More recently, different authors have explored

the use of ↵-stable models in distributed detection [73], acoustic tracking [110], anomaly

detection [85], wireless communications [76, 80] and biomedical applications [56]. An ex-
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tensive bibliography on ↵-stable distributions/processes and its applications is maintained by

Nolan [68].

In this chapter, we consider a detection problem using data from sensors configured in a

parallel topology. As indicated in Chapter 1, heterogeneous sensors observe a common phe-

nomenon. Their observations may be made over an arbitrary domain of measurement. For ex-

ample, these measurements may represent a time series (temporal measurements), a sequence

of spectral coefficients (measurements in frequency domain), or some other feature vector. In

their respective measurement domains, sensor observations are modeled as IID ↵-stable ran-

dom variables (e.g., temporally independent or independent spectral coefficients). The sensor

signal model is kept quite general, i.e., we do not explicitly specify whether the phenomenon of

interest is embedded in IID ↵-stable noise or if the ↵-stable model characterizes the dynamics

of the phenomenon itself.

Since the sensors jointly measure the same process, their measurements are spatially de-

pendent (i.e, across sensors). We use copulas to model this dependence (see Chapter 3). This

↵-stable-copula model serves as the focal point of our investigation of detection of dependent

heavy-tailed data. The generality of our signal model and the copula-based dependence for-

mulation distinguishes this work from previous works, such as [73], which have specifically

considered conditionally independent sensor observations embedded in ↵-stable noise.

Multivariate ↵-stable models have also been defined and used for inference on random

vectors with heavy tails (e.g., see [69, 70, 75, 81]). A multivariate ↵-stable model generalizes

the univariate ↵-stable law and is defined using a joint characteristic function. Consequently,

with the exception of a few applications1, obtaining the resultant ↵-stable marginal densities

is not computationally tractable. In contrast, the copula approach allows for the synthesis of

a joint distribution based on pre-specified, possibly heterogeneous, marginal models. Recall

that copulas are parametric probability distributions that couple univariate marginals to gener-
1see Nolan [68, 69] and references cited therein
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ate a valid joint distribution that incorporates statistical dependence. In this chapter, we utilize

several families of copula functions, which can characterize non-linear and asymmetric depen-

dencies. Copula-based methods of inference also scale well across multisensor or multidimen-

sional formulations. This should be contrasted with completely nonparametric formulations,

such as learning-based techniques, which are known to suffer from scalability issues stemming

from the curse of dimensionality.

In the following sections, we develop the idea of distributed signal detection, using a copula

based characterization of dependence, for ↵-stable data. Section 4.2 lays out the canonical

signal model for spatially dependent ↵-stable data. The detection problem is formulated in

Section 4.3, and variations of the likelihood ratio test under the Neyman-Pearson framework

are studied. The proposed detection schemes are applied to simulated data and the results thus

obtained are discussed in Section 4.4.

4.2 Signal Model

We consider a two-sensor system, where each sensor transmits its analog measurements or ob-

servation data to the fusion center (FC). The two-sensor restriction is without loss of generality:

the theory developed in this chapter (Propositions 4.1, 4.3 and 4.4) readily extends to multiple

sensors and, significantly, our main conclusions do not depend upon the number of sensors.

The two-sensor formulation allows us to minimize the notational complexity in the exposition

of the theory.

Sensor i 2 {1, 2} transmits {xij}Nj=1, a sequence of N IID measurements, to the FC. Each

xij is a realization of the random variable Xi, where j indexes the measurement domain, which

can be time, frequency, or any other feature. The sensor model is the p.d.f. fXi , which is

characterized using ↵-stable distributions (Section 4.2.1).

Denote the j-th observation pair as xj = [x1j, x2j]
T where [·]T denotes matrix/vector

transpose. In general, the random vector X = [X1, X2]
T, has a joint density fX(xj) 6=
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fX1(x1j) · fX2(x2j), i.e., sensor observations are spatially dependent. This inter-sensor de-

pendence is modeled using copulas (Section 3.2). For x = {xj}Nj=1, fX(x) =

Q

j fX(xj),

i.e., sensor data are independent across j. It is not necessary that fX1 = fX2 , i.e., the sensors

are heterogeneous. The ↵-stable p.d.f. fXi is also referred to as the marginal density since

we can obtain each sensor model by marginalizing fX ; ↵-stable parameters corresponding to

marginal p.d.f.s are called the marginal parameters.

The FC uses the received data to calculate a test-statistic, which is compared to a threshold.

Under the Neyman-Pearson framework, the threshold is chosen such that the probability of

detection, PD, is maximized under a constraint on PF , the probability of false alarm.

4.2.1 Stable distributions

We model Xi as an ↵-stable random variable. An ↵-stable distribution (also referred to simply

as a stable distribution), does not necessarily have a closed-form p.d.f. They are defined in

closed-form by their characteristic function (CF),

'Xi(t) = exp(��↵|t|↵B↵(t) + i�t) (4.1)

B↵(t) =

8

>

>

<

>

>

:

[1� i� tan (⇡↵/2) sgn(t)] , for ↵ 6= 1

[1 + i�(2/⇡) sgn(t) log |t|] , for ↵ = 1

(4.2)

where i =
p�1, ↵ 2 (0, 2], � 2 [�1, 1], � > 0 and � 2 R. The parameters ↵, �, � and � are,

respectively, the tail-index, location, dispersion and skewness parameters. The CF, 'Xi(t), and

p.d.f., fXi(xij), are Fourier transform pairs.

We denote the distribution of Xi as

Xi ⇠ S(↵, �, �, �). (4.3)
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The standard form refers to the case where � = 0 and � = 1 so that, ��1/↵
(Xi � �) ⇠

S(↵, �, 1, 0). The support for fXi depends on the values of ↵, � and � [67],

supp [fXi] =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

[�,1) for ↵ < 1, � = 1,

(�1, �] for ↵ < 1, � = �1,

R otherwise.

(4.4)

Remarks

Some special cases and properties of ↵-stable distributions are as follows:

• Closed-form p.d.f. A closed-form p.d.f. exists for three special cases: Cauchy (↵ = 1,

� = 0), Lévy (↵ = 0.5, � = 1), and normal (↵ = 2) distributions.

• Existence of moments. The m-th order moment exists only if m 2 (0,↵). For example,

for the Cauchy distribution neither mean nor variance is defined since ↵ = 1.

• Fractional order moments. Analogous to Lp norms for non-integer values of p  2,

typically considered in robust control, the p-th order fractional moments (see [84]) of an

↵-stable random variable can be defined as,

E [|Xij|p] , for p < ↵.

For p � ↵, E [|Xij|p] = 1. These p-th order moments are also called fractional lower

order moments (FLOM). Parameter estimation based on FLOM has been an active area

of research [6].

• Symmetry. As noted in Section 4.1, � = � = d implies a symmetric distribution about

the median d. This is also called a symmetric ↵-stable distribution, denoted as S↵S. For

the S↵S case, when the mean is not admissible, � corresponds to the median [95].
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4.2.2 Dependent stable signals

For the two sensor problem under consideration, recall that Xi is distributed as in (4.3), i.e.,

X1 ⇠ S(↵1, �1, �1, �1) and X2 ⇠ S(↵2, �2, �2, �2). Using the vector notation

 i = [↵i, �i, �i, �i]
T, i = 1, 2, (4.5)

the marginal density for the j-th observation from sensor i is fXi(xij; i). Consider an arbi-

trary, possibly unknown copula, c, parametrized by a d-dimensional column vector, �c. The

dimension, d, and the properties of �c depend on the definition of the specific copula, c. Denote

the probability integral transform for the copula argument as,

uij( i) , FXi(xij; i), i = 1, 2 (4.6)

Thus, for dependent ↵-stable signals, (3.7) can be rewritten as,

fX(x;✓) =

QN
j=1 fX1(x1j; 1)fX2(x2j; 2)

⇥ c (FX1(x1j; 1), FX2(x2j; 2);�c)

=

QN
j=1 fX1(x1j; 1)fX2(x2j; 2)

⇥ c (u1j( 1), u2j( 2);�c) (4.7)

where the column vector

✓ = [ 1  2 �c]
T

is contained in the parameter space, ⇥c, defined as the product set of respective component

marginal and copula parameter spaces,  i and �c. That is,

⇥c ,  1 ⇥ 2 ⇥ �c
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This serves as the canonical signal model or data generating process (DGP), which is further

qualified in terms of the null and alternative hypotheses for the detection problem. All notations

leading to the DGP, as well as those appearing in Section 4.3, are summarized in Table 4.1.

4.3 The detection problem

We formulate the detection problem as a test of hypotheses

H0 : f 0
X = fX(xj;✓0) vs. H1 : f 1

X = fX(xj;✓1), (4.8)

f 0
X 6= f 1

X , 8 j = 1, 2, . . . , N . The parameters under the null and alternative hypotheses are,

respectively,

✓0 =



 10  20 �c0

�T

(4.9)

and,

✓1 =



 11  21 �c1

�T

. (4.10)

In (4.8), we assume that H0 is completely specified, whereas H1 is composite. Such a formula-

tion is frequently encountered in applications such as anomaly detection, where the “normal”

operational state of a process is known a priori. Specifically, ✓0 is a fixed and known point

in the parameter space ⇥c0 , defined for the (known) copula c0. ✓1 2 ⇥c1 is deterministic but

unknown such that the distribution parameters as well as the copula function under H1, c1, are

unknown. The space ⇥c1 is not defined completely since c1 is assumed to be unknown. There-

fore, the formulation in (4.8) leads to a test over the parameter space, as well as the space of

copula functions.

In order to simplify the problem, we consider a copula library, C, containing candidate

copulas, defined over an indexing set, M. For the applications discussed in Section 4.4.3, we

use the copulas listed in Table 4.2. These are among the most commonly applied copulas in the
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Table 4.1: Symbols and Notations

Notation Description

j Measurement index, j = 1, 2, . . . , N

xij j-th observation from i-th sensor, i = 1, 2

Xi ↵-stable random variable corresponding to xij

 i or  ik Vector of ↵-stable parameters for sensor i and hypothesis k 2
{0, 1}, where specified; see (4.5).

fXi(xij; i) Sensor model or p.d.f. of Xi

FXi(xij; i) CDF of Xij; also see (4.6)
X , xj , x Random vector [X1, X2]

T, its j-th sample realization, xj =

[x1j, x2j]
T, and the sequence, x = {xj}Nj=1.

�c Dependence parameter for copula c

✓ or ✓k Joint parameter vector [ 1, 2,�c]
T or, specifically,

[ 1k, 2k,�ck ]
T under Hk

fX Joint p.d.f. of X expressed as a product of ↵-stable marginals fX1 ,
fX2 and copula c; see (4.7).

fk
X Joint p.d.f. under hypothesis k.
C Copula function library; see Table 4.2
c⇤ Copula selected using ML-based copula selection

b

 i, b�c⇤ ML estimates of marginal parameters i and copula parameter �c⇤

b

✓⇤ Concatenated vector [b 1,
b

 2,
b�c⇤ ]

T

f ⇤
X Joint p.d.f. obtained using c⇤ as the copula with ML parameter

estimates, i.e., fX(xj;
b

✓

⇤
)

e

✓k Pseudo-true value, evaluated under hypothesis Hk, when fk
X is not

the data generating process
˜fk
X Joint p.d.f. evaluated at e✓k, i.e., fX(xj;

e

✓k)
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Table 4.2: Library of copula functions

Copulas Parametric CDF Parameter range

Gaussian FG(F
�1
G (x1), . . . , F

�1
G (xm);⌃), ⌃ =

⇥

1 ⇢
⇢ 1

⇤

,
⇢ 2 [�1, 1]

Student-t t⌫,⌃(t
�1
⌫ (x1), . . . , t

�1
⌫ (xm)), ⌫ � 3

Clayton
⇣

Pm
i=1 u

��
i � 1

⌘�1/�

� 2 [�1,1)\{0}

Frank �1

�
log

"

1 +

�

Qm
i=1 e

��ui � 1

�

(e�� � 1)

#

� 2 R\{0}

Gumbel exp

n

� �Pm
i=1(� ln ui)

�
�

1
�

o

� 2 [1,1)

Product
Qm

i=1 ui –

FG(x;⌃): multivariate normal CDF with mean 0 and covariance ⌃;
F�1
G (xi): inverse univariate normal CDF with mean 0 and variance 1;

t⌫,⌃: multivariate Student-t CDF; t�1
⌫ : inverse CDF of univariate Student-t

literature [17]. Note that each copula is defined as a bivariate CDF; the corresponding density

function is obtained by using (3.8).

Since the copula corresponding to the DGP under H1 is unknown, a best fit is selected from

the functions contained in C. Therefore, the hypothesis testing problem implicitly contains a

model selection component in the formulation, in which we attempt to identify the “best” cop-

ula, c⇤( · ;�⇤
c⇤), for the alternative hypothesis, where {c⇤(·;�c⇤)|�c⇤ 2 �c⇤} 2 C. In developing

the theory, we assume that the “true” copula is contained in C, i.e., our models are well spec-

ified. The effect of model misspecification in the context of copula-based hypothesis testing

has been addressed by Iyengar [36]. In general, the selected copula, c⇤, may not admit any

parameter which can also describe the copula model under the null hypothesis, c0(· ;�c0). That

is, there may not exist �c⇤ 2 �c⇤ such that c⇤(· ;�c⇤) = c0(· ;�c0). Therefore, our formulation

also considers the more general case of testing non-nested hypotheses [20, 21, 74, 100, 105].

The hypothesis testing problem is solved under the Neyman-Pearson framework, i.e., we
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seek to design tests that operate under a false-alarm constraint. We use the generalized likeli-

hood ratio test (GLRT) as the starting point and investigate its properties. The GLR test-statistic

is modified, to accommodate uncertainty about c1, by also maximizing over C, so that

TGLR = log fX(x;

b

✓⇤)� log fX(x;✓0) (4.11)

=

"

N
X

j=1

log fX1(x1j;
b

 1)� log fX1(x1j; 10)

#

+

"

N
X

j=1

log fX2(x2j;
b

 2)� log fX2(x2j; 20)

#

+

"

N
X

j=1

log c⇤
�

u1j(
b

 1), u2j(
b

 2);
b�c⇤
�

� log c0
�

u1j( 10), u2j( 20);�c0

�

#

(4.12)

and, b i = arg sup

 i2 i

N
X

j=1

log fXi(xij; i), i = 1, 2. (4.13)

Given an arbitrary indexing set, M, for the copula library, C, c⇤ ⌘ cm⇤ such that for any

cm 2 C,m 2 M

m⇤
= argmax

m2M

n

`cm(b�m) | b�m = arg sup

�m2�m

`cm(�m)

o

, (4.14)

`cm(�m) =

N
X

j=1

log cm
�

u1j(
b

 1), u2j(
b

 2);�m

�

. (4.15)

In (4.11), b✓⇤ is obtained by estimating the marginal parameters,  i, independently, prior to

obtaining b�m, as in (4.14) and (4.15). This two-step procedure is known as the inference for

margins (IFM) method [17] and is different from estimating the marginal and copula parame-

ters simultaneously. It follows from (4.14) that b�c⇤ 2 �c⇤ , in (4.12), is the maximum likelihood
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estimate (MLE) of c⇤. The decision rule is

TGLR

H1

?
H0

⌘a, (4.16)

where ⌘a is the threshold that satisfies the constraint PF = a. Deriving the distribution for

TGLR for finite N is very difficult. Asymptotic distributions, however, may be derived. In the

analysis that follows, we denote fX(xj;
b

✓⇤) as f ⇤
X and include the subscript N in the notation

for finite-sample statistics to emphasize dependence on sample size, as necessary.

4.3.1 Nested hypotheses or nested copula models

In general, for arbitrary hypotheses H and K, H is said to be nested in K if it is possible to

derive H from K “either by means of an exact set of parametric restrictions or as a result of

a limiting process” [74]. To define nesting in a more precise manner, it is helpful to define a

model as a set of p.d.f.s indexed over admissible parameter values. The p.d.f. form of a nested

model [100] is stated in Definition 4.1. Based on this, we formally define a nested copula

model, which allows us to derive asymptotic results for our formulation.

Definition 4.1 (Nested model). For a continuous random vector Z 2 Z ⇢ Rn, given two

models, F0 , {f0(z;✓0) | ✓0 2 ⇥0} and F1 , {f1(z;✓1) | ✓1 2 ⇥1}, where f0 and f1 are

arbitrary p.d.f.s of Z, F0 is said to be nested in F1 if and only if F0 ⇢ F1 8 z 2 Z.

Definition 4.2 (Nested copula model). A copula family or model C0 , {c0(u, v;�0) | �0 2
�0} is nested in copula model C1 , {c1(u, v;�1) | �1 2 �1} if and only if C0 ⇢ C1 for

(u, v) 2 [0, 1]2 almost everywhere.

Nested copulas and nested models are related to each other through the following lemma.

Lemma 4.1. For k = 0, 1, arbitrary continuous p.d.f.s fk, gk, hk and copulas ck, define the
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models

Fk = {fk(x; fk
) |  fk

2  fk}, x 2 X ⇢ R, (4.17)

Gk = {gk(x; gk
) |  gk

2  gk}, y 2 Y ⇢ R, (4.18)

Ck = {c0(u, v;�k) | �k 2 �k}, (u, v) 2 [0, 1]2, (4.19)

Hk = {hk(x, y) = fk(x)gk(y)ck(Fk(x), Gk(y))

| fk 2 Fk, gk 2 Gk, ck 2 Ck},
(4.20)

where, X and Y are closed with xL = inf X, yL = inf Y, Fk(x) =
R x

xL
fk(x

0
)dx0 and Gk(y) =

R y

yL
fk(y

0
)dy0.

A joint model H0 is nested in H1 if and only if marginal and copula models are both nested,

i.e., F0 is nested in F1, G0 is nested in G1 and C0 is nested in C1.

Proof. We need to prove both “if” and “only if” parts.

Nested marginal models ) nested joint model: It is easy to see that if F0 ⇢ F1, G0 ⇢ G1,

and C0 ⇢ C1 then any product f0g0c0 2 H0 is also contained in H1, and hence H0 ⇢
H1 8 (x, y) 2 X ⇥ Y.

Converse: For k = 0, 1, we first define the CDF models

H 0
k = {Hk(x, y) =

R x

xL

R y

yL
hk(x

0, y0)dx0dy0 |hk 2 Hk},
C 0
k = {Ck(u, v) =

R u

0

R v

0 ck(u
0, v0)du0dv0 | ck 2 Ck}.

Then, since H0 ⇢ H1 8 (x, y) 2 X ⇥ Y, we have H 0
0 ⇢ H 0

1 . Using (3.6) from Theorem 3.1,

{C0(F0(x), G0(y);�0)|�0 2 �0} ⇢ {C1(F1(x), G1(y);�1)|�1 2 �1}. Since (a) X and Y are

closed, and (b) Fk, Gk are continuous, C 0
0 ⇢ C 0

1 8 (u, v) 2 [0, 1]2. Consequently C0 ⇢ C1, i.e.,

c0 2 C0 ) c0 2 C1.

That F0 ⇢ F1 and G0 ⇢ G1 remains to be proved. We prove this by contradiction. Three

contradictory cases exist: (a) F0 6⇢ F1 and G0 ⇢ G1; (b) F0 ⇢ F1 and G0 6⇢ G1; and

(c) F0 6⇢ F1 and G0 6⇢ G1. We provide detailed arguments to show that case (c) is not
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possible; cases (a) and (b) can be disproved using arguments similar to those presented below.

Assume 9 ¯f 2 F0 6⇢ F1 and ḡ 2 G0 6⇢ G1 so that ¯h(x, y) =

¯f(x)ḡ(y)c0( ¯F (x), ¯G(y)),

where ¯h(x, y) 2 H0 ⇢ H1 (i.e., ¯h(x, y) 2 H1). Therefore, following (4.20) for k = 1, there

must exist marginal densities ¯f1 6= ¯f , ḡ1 6= ḡ such that ¯f1 2 F1, ḡ1 2 G1 and ¯h(x, y) =

¯f1(x)ḡ1(y)c0( ¯F1(x), ¯G1(y)). Thus, a single copula c0 is associated with the same joint density

¯h(x, y) for distinct marginal pairs { ¯f(x), ḡ(y)} and { ¯f1(x), ḡ1(y)}. That is,

¯f(x) 6= ¯f1(x) contradicts ¯f(x) =
R

Y h(x, y)dy =

¯f1(x) and

ḡ(y) 6= ḡ1(y) contradicts ḡ(y) =
R

X h(x, y)dx = ḡ1(y),

implying, that @ ¯f 2 F0 6⇢ F1, ḡ 2 G0 6⇢ G1. Hence, H0 ⇢ H1 ) F0 ⇢ F1,G0 ⇢
G1 and C0 ⇢ C1 8 (x, y) 2 X ⇥ Y

Lemma 4.1 allows us to state and prove chi-square convergence in distribution for TGLR

through Proposition 4.1.

Proposition 4.1. Suppose that the hypothesis testing problem in (4.8) is specified as follows:

(i) The joint distribution, f 1
X , and parameter space under H1 are not known since c1 is

unknown. The p.d.f. f ⇤
X and corresponding parameter space, ⇥c⇤ , are determined as an

outcome of the copula selection process in (4.14).

(ii) X is well specified in {f 0
X} [ {fX(xj;✓) |✓ 2 ⇥c⇤}.

(iii) There may exist marginal parameters which are fixed and the same for both hypothe-

ses. Denote the parameter subspace containing only free parameters as ⇥0
c⇤ . Then,

dim(⇥c⇤)� dim(⇥

0
c⇤) = ⌫ � 0.

(iv) The copula model under H0 is nested in the copula model selected under H1. That is,

for known �c0 such that C0 = {c0(u, v;�c0)}, and for C ⇤
= {c⇤(u, v;�c⇤)|�c⇤ 2 �c⇤},

C0 ⇢ C ⇤ 8 (u, v) 2 [0, 1]2.
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Additionally, for sensor i, and hypothesis k,  ik 2  ik ⇢  ,

 = {[↵, �,�, �]T | ↵ 2 [", 1) [ (1, 2), " > 0;

|�| < min(↵, 2� ↵); � 2 (0,1); � 2 R}.
(4.21)

Then, under H0, as N ! 1,

2TGLR
D�! �2

µ�⌫ , (4.22)

where, µ = dim(⇥c⇤) > ⌫ and �2
µ�⌫ is a chi-square random variable with µ � ⌫ degrees of

freedom.

Proof. To prove �2 convergence, as seen in (4.22),we essentially invoke Wilks theorem (WT)

[106]. However, to apply WT, we first need to prove that (a) the joint null model H0 =

{fX(xj;✓0)} is nested in the joint model H1 = {fX(xj;✓) | ✓ 2 ⇥c⇤}, and (b) that the pa-

rameter estimates obtained using the IFM method are asymptotically normal. The marginal

models under the null hypothesis are nested for each i = 1, 2, i.e., {fXi(xij; i) |  i =

 i0} ⇢ {fXi(xij; i) |  i 2  i}. Since both marginals and copula models are nested, from

Lemma 4.1, H0 ⇢ H1.

We use primes to denote both, free parameters, which need to be estimated, and their cor-

responding subspaces. Thus,  0
i denotes the vector of free marginal parameters, for the i-th

sensor, contained in the subspace  0
i. Given (4.21),

p
N(

b

 

0
i � 0

i)
D�! N (0, I�1

( 

0
i)), (4.23)

where2 I( 0
i) is the corresponding Fisher information matrix evaluated at the true value,

 

0
i [26]. For marginal estimates, which are asymptotically normal, as in (4.23),

p
N(

b

✓

0
⇤ � ✓0⇤) D�! N (0,G�1

(✓

0
⇤)), (4.24)

2N (m,C) denotes a normal random vector with mean m, covariance C.
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where G(✓0⇤) is the Godambe information matrix [41] evaluated at the true value, ✓0⇤. Since

H0 ⇢ H1, and b✓
0
⇤ is asymptotically normal WT yields (4.22).

Remark. In the proof of Proposition 4.1, the restriction on  i, as given in (4.21), is used to

assert the asymptotic normality of b i, under H1. We additionally require that (4.21) be true

under H0 to ensure that the two hypotheses are nested.

Proposition 4.1 implies that we can express the probability of false alarm as a function of

the threshold, ⌘, using the �2 CDF, F�2 , i.e.,

PF (⌘) = 1� F�2
(2 ⌘;µ� ⌫).

Thus, for PF = a, the detector threshold can be designed as,

⌘a = 0.5F�1
�2 (1� a;µ� ⌫). (4.25)

Using (4.24), under the conditions listed in Proposition 4.1, the asymptotic convergence of

the test-statistic under H1 is an extension of Wald’s result [101],

2TGLR
D�! �̄2

µ�⌫

�

(✓

0
c⇤ � ✓00)TG(✓0c⇤)(✓0c⇤ � ✓00)

�

, (4.26)

where �̄2
r(p) denotes a non-central chi-square distribution with r degrees of freedom, and non-

centrality parameter, p. The vector ✓00 contains the parameters under H0; it is a point in the

µ� ⌫ dimensional subspace ⇥0
c0
=  

0
1 ⇥ 0

2 ⇥ �c0 .

4.3.2 Non-nested models

We now consider the case when H0 is not nested in H1. The general class of non-nested

hypothesis testing problems was first considered by Cox [20, 21]. Subsequently, White [105]

analyzed the problem to establish the regularity conditions under which Cox’s proposed test
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is valid. Vuong [100] has generalized this work, by defining precise forms of model nesting,

and deriving a hypothesis testing based model selection scheme. These formulations consider

a composite null hypothesis. We, however, formulate a simple null hypothesis. We derive the

distribution of the test-statistic under H0 and observe that it has a form which is similar to

previously derived results [21, 74, 100, 105].

Non-nestedness implies that the p.d.f. under H1 can have a different functional form as

compared to the p.d.f. under H0. Consequently, though observations may be generated by

H0, likelihood maximization, in TGLR, is carried out for a function in H1. Hence, asymptotic

convergence of the MLE to a pseudo-true value needs to be defined.

Definition 4.3 (Pseudo-true value and QMLE [74]). Suppose a DGP HDGP = {h(z;✓h) | ✓h =

✓h0 2 ⇥h} is defined over the random vector Z 2 Z ⇢ Rn. The pseudo-true value for a

model G = {g(z;✓g) | ✓g 2 ⇥g} is then defined as that value of ✓g which minimizes the

Kullback-Leibler divergence (KLD), DKL, between h and g. That is,

e

✓g , argmin

✓g2⇥g

DKL

�

h(z;✓h0) k g(z;✓g)
�

= arg sup

✓g2⇥g

Eh {log g(z;✓g)} ,
(4.27)

where Eh is the expectation under h. For the N -sample IID sequence {zj}Nj=1, the quasi-

maximum likelihood estimate (QMLE) is the sample estimate,

b

✓g,N = arg sup

✓g2⇥g

(1/N)

PN
j=1 log g(zj;✓g). (4.28)

Under mild regularity conditions, it can be shown that b✓g,N exists and is a strongly consis-

tent estimator of e✓g, i.e., b✓g,N
a.s.��! e

✓g [104], and, therefore, b✓g,N
P�! e

✓g. Using the consistency

of the QMLE, we next prove that, asymptotically, the model selection scheme of (4.14) will

select the true copula.
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Proposition 4.2. If {c(u1, u2;�c) | �c 2 �c} 2 C is the copula model corresponding to the

DGP, the selection process in (4.14) will select the true copula, c, asymptotically in N .

Proof. Consider an arbitrary indexing set, M, for the copula library, C. Suppose

{cm(u1, u2;�cm) | �cm 2 �cm} 2 C

such that cm 6= c for some m 2 M. Recall that (4.14) maximizes cm(·;�cm) over �cm for

every cm 2 C, and selects that copula which has the maximum likelihood over all m 2 M.

Also, likelihood maximization does not change under normalization by N , i.e., for `c,N(�c) =

P

j=1 log c(u1j, u2j;�c),

b�c,N = arg sup

�c2�c

`c,N(�c) = arg sup

�c2�c

N�1`c,N(�c).

A similar observation holds for cm. Although the true parameter value of c is unknown a priori,

it exists and is denoted as �0
c. Since b�c,N

P�! �0
c and b�cm,N

P�! e�cm , we can write3:

plim

N!1

PN
j=1[log c(·; b�c,N)� log cm(·; b�cm,N)]/N (4.29)

= Ec[log{c(u1, u2;�
0
c)/cm(u1, u2;

e�cm)}] (4.30)

= DKL(c k cm) > 0 (4.31)

where Ec is the expectation under c and (4.30) is a consequence of the law of large numbers. In

(4.31), DKL(c k cm) denotes the KLD between c and cm; the inequality is strict since c 6= cm.

From (4.29) and (4.31),

plim

N!1

1

N

N
X

j=1

log c(·; b�c,N) > plim

N!1

1

N

N
X

j=1

log cm(·; b�cm,N).

3If XN
P�! X as N ! 1 we can equivalently write X = plim

N!1
XN .
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The above arguments hold true for all cm 2 C distinct from c. Therefore, using (4.14), c will

be selected as N ! 1

Proposition 4.2 is significant because it implies that, when the data are generated under

H0, if c0 is contained in C, copula selection will always (asymptotically) select c0 as c⇤. In

effect, there are very specific cases when TGLR, under H0, is evaluated from p.d.f.s contained

in non-nested models:

1. marginals are nested, but we know the function c1 a priori;

2. marginals come from the same family (↵-stable in this paper), but not nested because the

marginal parameters are defined over disjoint subspaces over the hypotheses.

For the first case (nested ↵-stable marginals and non-nested copulas), since the functional

form of the copula under H1 is known, C contains only c1, and, trivially, c⇤ = c1. Hence, there

is no model selection component to the detection problem. Irrespective of the true hypothesis,

the marginal parameter estimates, b i, will converge to the true value, i and, therefore, uij(
b

 i)

will be asymptotically uniform. Thus, b�c1 , obtained by maximizing c1(u1j(
b

 1), u2j(
b

 2);�c1),

will converge to e�c1 and, therefore, we can use the IFM method for copula parameter estima-

tion.

The second case, with non-nested marginals, will occur when the problem is defined such

that H0 is specified for a marginal parameter that cannot be achieved by likelihood maximiza-

tion under H1. This includes the case where H0 is defined as one of the points not allowed

for ↵-stable ML estimation (see (4.21)), e.g., when dependent Cauchy distributed marginals

under H0 (↵i = 1) are tested against the composite alternative of dependent, stable distributed

marginals. Alternatively, there may exist additional knowledge about H1 that indicates a re-

stricted marginal parameter range; b i is then a range-restricted MLE. When the marginals are

not nested, uij(
b

 i) is not asymptotically distributed as U(0, 1), and the IFM estimate, b�c⇤ , is
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not consistent. In this case, we use the nonparametric empirical CDF (ECDF),

bFXi(t) = (1/N)

P

j 1{xij < t}. (4.32)

In (4.12), the estimate ûij =

bFXi(xij) is used in place of uij(
b

 i). Since bFXi

P�! FXi , it can

be shown that a two-step procedure, using ûij instead of uij(
b

 i), also leads to a consistent

estimate of the copula parameter [41].

When the data are generated by H1, both, uij(
b

 i) and buij , are asymptotically uniform,

and as a result b�c⇤ is consistent. Thus, Proposition 4.1 and (4.26) hold if ûij is used instead

of uij(
b

 i). In Proposition 4.3, we establish the asymptotic distribution of TGLR under H0 for

non-nested hypotheses.

Proposition 4.3. For the formulation in (4.8), the null and alternative p.d.f. models are H0,

H1, respectively, so that H0 6⇢ H1. Denote the pseudo-true value of ✓ under H1 as e✓1 so that

˜f 1
X = fX(xj;

e

✓1). Under H0,

p
N
⇣

TGLR/N +DKL(f
0
Xk ˜f 1

X)

⌘

D�! N (0, ew2
), where (4.33)

ew2
= E0[{log f 0

X/ ˜f 1
X}2]� {E0[log f

0
X/ ˜f 1

X ]}2 (4.34)

and E0 is the expectation under f 0
X .

Proof. Let the log-likelihood under H0 be `N(✓0) =
P

j log fX(xj;✓0), ✓0 2 ⇥c0 ⇢ Rp0 . Un-

der (composite) H1 as `N(b✓⇤) =
P

j log fX(xj;
b

✓⇤), b✓⇤ 2 ⇥c⇤ ⇢ Rp1 . Expanding `N(e✓1) =
P

j log fX(xj;
e

✓1), e✓1 2 Rp1 , about b✓⇤, using the mean-value form for the remainder in Tay-

lor’s theorem, we obtain

`N(e✓1) = `N(b✓⇤) + [r✓`N(b✓⇤)]
T
(

e

✓1 � b✓⇤) + 1

2

(

e

✓1 � b✓⇤)T[r2
✓`N(¯✓)](

e

✓1 � b✓⇤), (4.35)

where ¯

✓ lies on the segment joining e✓1 and b✓⇤. As a consequence of likelihood maximiza-
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tion, r✓`N(b✓⇤) = 0. The law of large numbers implies that (1/N)r2
✓`N(

b

✓⇤)
P�! E0[r2

✓
˜f 1
X ],

where the expectation is under H0 since it corresponds to the hypothesis under which the

data are being generated. This convergence also holds for the likelihood evaluated at ¯

✓ as

(

e

✓1�b✓⇤) P�! 0 and, thus, the error term (

e

✓1� ¯

✓ ) converges similarly. Therefore, we can write

(1/N)r2
✓`N(

¯

✓) = E0[r2
✓
˜f 1
X ] +YN , where YN is a p1 ⇥ p1 matrix such that each element is a

op(1) random variable4. Let A1 = E0[r2
✓
˜f 1
X ] and ✓✏1,N =

e

✓1 � b✓⇤ so that (4.35) becomes

`N(e✓1) = `N(b✓⇤) + (N/2)✓✏1,N
T
(A1 +YN)✓

✏
1,N

| {z }

=JN

. (4.36)

where,

JN =

N

2

✓

✏
1,N

T
A1✓

✏
1,N +

1

2

(

p
N✓✏1,N)

T
YN(

p
N✓✏1,N).

Also,
p
N✓✏1,N

D�! N (0,A�1
1 B1A

�1
1 ), B1 = E0[r✓

˜f 1
X · rT

✓
˜f 1
X ] (see [104, Theorem 3.2]).

Each element of (
p
N✓✏1,N) converges in distribution to a normal random variable, and hence,

is bounded in probability5 (see Theorem 2.3.2 in [57]). Lemma 2.3.1 and Theorem 2.1.3 from

[57] prove that6
(

p
N✓✏1,N)

T
YN(

p
N✓✏1,N) is oP (1). Set eTN = `N(e✓1) � `N(✓0). Note that

TGLR,N ⌘ TGLR = `N(b✓⇤)� `N(✓0). Thus,

TGLR,N =

eTN � (N/2)✓✏1,N
T
A1✓

✏
1,N + oP (1) (4.37)

)
p
N(TGLR,N/N + E0[log f

0
X/ ˜f 1

X ])

= �
p
N(�eTN/N � E0[log f

0
X/ ˜f 1

X ])

� (

p
N✓✏1,N

T
A1✓

✏
1,N)/2 + (1/

p
N)oP (1). (4.38)

A1 does not depend on N and ✓✏1,N is oP (1). Consequently, using Lemma 2.3.1 from [57],

4A random variable XN is oP (TN ) if (XN/TN )
P�! 0 as N ! 1.

5XN is said to be bounded in probability (denoted OP (1)) iff for every ✏ > 0 9 B✏ < 1 and N✏ such that
Pr[|XN |  B✏] > 1� ✏ 8 N � N✏.

6The lemma and two theorems are informally stated as follows (see [57] for more details). Theorem 2.3.2:
XN

D�! X ) XN = OP (1); Lemma 2.3.1: oP (1) ·OP (1) = oP (1); Theorem 2.1.3: oP (1) + oP (1) = oP (1).
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p
N✓✏1,N

T
A1✓

✏
1,N is oP (1). Therefore,

p
N(

TGLR,N

N
+DKL(f

0
Xk ˜f 1

X) ) = op(1)�
p
N{(1/N)

P

j log f
0
X/ ˜f 1

X �E0[ log f
0
X/ ˜f 1

X ]}.

The second term in the RHS contains the sample mean of log f 0
X/f 1

X and its expectation; apply

CLT to get (4.34).

Although ew2 depends on the pseudo-true value under H1, it can be consistently estimated

from the observations as

bw2
= (1/N){PN

j=1 T
2
GLR,j � T 2

GLR}, (4.39)

where TGLR,j = log f ⇤
X/f 0

X [100]. The asymptotic distribution under H1 can be proved in a

manner similar to Proposition 4.3.

Proposition 4.4. For the hypothesis testing problem in Proposition 4.3, under H1, as N ! 1,

{TGLR/N �DKL(f
1
Xkf 0

X)}/( bw/pN)

D�! N (0, 1) (4.40)

Proof. We proceed along similar lines as Proposition 4.3, but by replacing E0 by E1, i.e., the

expectation under H1. Note that since the data are generated under H1, we use ✓1 instead of

e

✓1. Denote the variance of TGLR under H1 as

w2
1 = E1

⇥

(log f 1
X/f 0

X)

2
⇤� �E1

⇥

log f 1
X/f 0

X

⇤�2
.

The limit in (4.40) follows as bw2 P�! w2
1.

Equation (4.34) implies that determining the detector threshold requires knowledge of the

Kullback-Leibler divergence evaluated at the (pseudo-) true values of the distribution parame-
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ters under each hypothesis. Specifically, for PF = a,

⌘a =
p
N bwF�1

N (1� a)�NDKL(f
0
Xkf 1

X),

where F�1
N is the inverse CDF of the standard normal distribution and bw is obtained from data

generated under H0. Numerical methods may be employed to compute DKL for a two-sensor

formulation; however, it is easy to see that this is not scalable for a multi-sensor formulation. In

such scenarios, existing data-driven approaches such as bootstrapping, or extreme-value theory

(EVT) based distribution fitting of TGLR under H0 yield reliable approximations of ⌘a. The

latter approach based on EVT is especially attractive for detection with ↵-stable distributions.

This is because EVT indicates that the null distribution of likelihood ratio test statistics is

distributed asymptotically in the tails as a generalized Pareto distribution. This behavior would

be even more evident for stable-distributed observations, since such random variables exhibit

Pareto tails [27]. Ozturk et al. [72] provide a detailed treatment of estimating detector threshold

based on EVT.

4.4 Performance evaluation

In this section, we first illustrate the performance of the copula-based GLRT with the aid of

simulated data from specifically constructed examples (Section 4.4.1). We address compu-

tational challenges and discuss footstep detection using the seismic sensor data described in

Chapter 2, in Section 4.4.2 and Section 4.4.3, respectively.

4.4.1 Simulated examples

For each hypothesis, 50 ⇥ 10

5 pseudorandom sample pairs, representing dependent ↵-stable

sensor measurements xj , are generated using MATLAB [61]. Estimates b i, b�c⇤ and ûij , and

the test statistic, TGLR, are computed for every distinct group of N = 50 samples. PF and PD
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values are evaluated over the resultant 105 length sequence of TGLR values.

We use Kendall’s tau, ⌧ , to quantify the dependence for a given copula, c, instead of directly

specifying �c. This allows for a common basis for comparison across all examples being

considered. A rank-based measure of dependence, ⌧ is defined as the difference of probabilities

of concordance and discordance. For the copula CDF, C, ⌧ = 4E[C(u, v;�c)] � 1, and thus

there exists a one-to-one relationship between ⌧ and �c [65]. Analogous to ⇢, ⌧ 2 [�1, 1]:

⌧ < 0 and ⌧ > 0 indicate negative and positive dependence, respectively; independence implies

that ⌧ = 0.

For the three examples considered below, in (4.41), (4.43) and (4.44), the parameter val-

ues, as listed, are used for data generation. While evaluating the performance of our proposed

approach, boxed terms are assumed unknown for data processing, and are determined by esti-

mation or model selection as a part of our detection methodology.

Example 4.1 (Dependent S↵S distributions).

H0 : X1 ⇠ S(1.3, 0, 0.1, 0) X2 ⇠ S(1.5, 0, 0.1, 0)
c0 = cN (⌧ = 0.1)

H1 : X1 ⇠ S(1.3, 0, 0.1, 0.1 ) X2 ⇠ S(1.5, 0, 0.2 , 0)

c1 = ct(⌧ = 0.5, ⌫ = 3)

(4.41)

Sensor 1 measures shift in mean, and Sensor 2 measures change in dispersion. The dependence

under the null hypothesis is symmetric and is modeled using the Gaussian copula, cN . The

dependence under H1 is modeled using a t-copula, ct, with ⌫ = 3 degrees of freedom (DoF).

Both Gaussian and t copulas use the correlation coefficient, ⇢, as the dependence parameter

(see Table 4.2). Under H0, ⌧ = 0.1 , ⇢ = 0.15 indicates weaker dependence compared to

⌧ = 0.5 , ⇢ = 0.7 under H1. The empirical receiver operating characteristic (ROC) using

TGLR as the test-statistic is shown as the solid curve in Fig. 4.1. Recall that TGLR, in (4.12), uses

the copula selection procedure in (4.14). Often, one is tempted to assume that the dependence
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Fig. 4.1: ROC for Example 1: dependent S↵S distributions.
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model under the null hypothesis also prevails under the alternative hypothesis. This assumption

implies that instead of using c⇤, as would be obtained using (4.14), we use the Gaussian copula

under H1 so that the test-statistic is

T 0
=

PN
j=1 log{fX(xj; [

ˆ�1, �̂2, ˆ�cN ]
T
)/fX(xj;✓0)} (4.42)

with N = 50. While the Gaussian copula under H0 does not capture any tail dependence, the

t-copula exhibits both lower and upper tail dependence. Lower DoF values indicate heavier

dependence in the tails, i.e., extreme events co-occur with greater probability. As ⌫ ! 1, a t-

copula converges to a Gaussian copula. In that sense, ⌫ controls the amount of tail dependence.

As a consequence of mismodeling the copula, the tail dependence is inadequately characterized

and the detector using T 0 suffers a 10% decrease in PD for PF  10

�3. The ROC for T 0 is the

dashed curve in Fig. 4.1.

Example 4.2 (Nearly normal distributions). As in Example 1, Sensor 1 and Sensor 2 mea-

sure mean and dispersion, respectively. The standard normal distribution is equivalent to

S(2, 0, 0.5, 0). A tail index of 1.9 comes close to a normal distribution, but the tail still de-

cays at a polynomial rate. The problem is setup as,

H0 : X1 ⇠ S(1.9, 0, 1, 0) X2 ⇠ S(1.9, 0, 1, 0)
c0 = cN (⌧ = 0.064)

H1 : X1 ⇠ S(1.9, 0, 1, 1 ) X2 ⇠ S(1.9, 0, 1.5 , 0)

c1 = ct(⌧ = 0.41, ⌫ = 15)

(4.43)

The values of ⌧ under H0 and H1 correspond (approximately) to correlation coefficient

values of 0.1 and 0.6, respectively. At ⌫ = 15, the t-copula exhibits moderate to low tail

dependence. Example 1 demonstrated the effect of assuming the null dependence model in the

alternative hypothesis. A more egregious assumption is one of joint normality, as it represents




